Opendata, web and dolomites

NeXource SIGNED

Next-generation Plasma-based Electron Beam Sources for High-brightness Photon Science

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "NeXource" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF STRATHCLYDE 

Organization address
address: Richmond Street 16
city: GLASGOW
postcode: G1 1XQ
website: www.strath.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 2˙059˙493 €
 EC max contribution 2˙059˙493 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-COG
 Funding Scheme ERC-COG
 Starting year 2020
 Duration (year-month-day) from 2020-04-01   to  2025-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF STRATHCLYDE UK (GLASGOW) coordinator 2˙059˙493.00

Map

 Project objective

High-quality electron beams are required for advanced light sources and for high energy physics. Engines of discovery such as free-electron-lasers (FELs) and other bright light sources, are driven by electron beams today produced in km-long state-of-the-art linear accelerators (linacs). A complementary alternative are cm-scale plasma-based accelerators, which are feasible in university-lab scale environments. The NeXource project aims at combining key advantages of both types of accelerators to realize hybrid plasma-based accelerators orders of magnitude smaller and at the same time with electron beam quality orders of magnitude better than state-of-the-art. This has far-reaching impact as it will enable the construction of table-top coherent hard x-ray sources with extreme brightness. This project is motivated by experimental breakthroughs obtained in the E210 collaboration at the linac-driven plasma accelerator facility FACET at the Stanford Linear Accelerator Center (SLAC) and by the progress at laser-plasma-accelerator facilities, combined with novel conceptual approaches towards beams with unprecedented 6D-brightness by using tailored beamloading in plasma-based photocathodes. A dedicated setup for plasma photocathode prototyping and hybrid plasma acceleration will be established at the Scottish Centre for the Application of Plasma-based Accelerators (SCAPA) to develop beam brightness transformers. This R&D will be complemented by campaigns at SLAC, DESY, Daresbury Laboratory and laser-plasma-accelerator labs in Europe. Start-to-end simulations indicate that hard x-ray FEL’s with ultrahigh gain and other advanced light sources can be realised with such electron beams in university-scale labs, which would have transformative impact on photon science and a wide range of natural, life and material science.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NEXOURCE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NEXOURCE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

GelGeneCircuit (2020)

Cancer heterogeneity and therapy profiling using bioresponsive nanohydrogels for the delivery of multicolor logic genetic circuits.

Read More  

BECAME (2020)

Bimetallic Catalysis for Diverse Methane Functionalization

Read More  

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More