Explore the words cloud of the MAESTRO project. It provides you a very rough idea of what is the project "MAESTRO" about.
The following table provides information about the project.
Coordinator |
UNIVERSITEIT TWENTE
Organization address contact info |
Coordinator Country | Netherlands [NL] |
Total cost | 2˙000˙000 € |
EC max contribution | 2˙000˙000 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2019-COG |
Funding Scheme | ERC-COG |
Starting year | 2020 |
Duration (year-month-day) | from 2020-09-01 to 2025-08-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | UNIVERSITEIT TWENTE | NL (ENSCHEDE) | coordinator | 2˙000˙000.00 |
Manual insertion of rigid and unactuated probes are commonly used during minimally invasive surgery (MIS) for delivering diagnostic agents and performing therapeutic interventions. These agents move in an uncontrolled way and are visualized using non-real-time imaging modalities. Controlled release and real-time navigation of these agents would revolutionize MIS and pioneer a myriad of novel clinical interventions, including on-site diagnosis and targeted drug delivery. The goal of MAESTRO is to design a magneto-acoustic robotic system that will enable precise delivery of a wide range of diagnostic and therapeutic micro-agents using ultrasound (US) and fluorescence images for accurate feedback. In an unprecedented approach, I propose that the magneto-acoustic agents will be delivered using a magnetically-actuated flexible probe. As the probe and micro-agents deviate from their intended paths due to probe-tissue interaction and physiological processes, their controlled navigation requires development of a reliable multi-scale 3D model describing the evolving shape of the probe, and real-time tracking of micro-agents. These challenges will be overcome using a personalized pre-operative model based on anatomical details (acquired via US and fluorescence images) to achieve real-time intra-operative control of the probe, with feedback from US images and optical sensors. Furthermore, ultrafast US- and fluorescence-based imaging will be coupled to electromagnetic and piezoelectric systems to robustly control the micro-agents. The novel probe and micro-agents will be designed and evaluated in clinically-relevant scenarios with realistic physiological functionalities. The knowledge gained will be applicable to a range of flexible instruments, and to an assortment of personalized treatment scenarios. This research is motivated by the need to further reduce the invasiveness of MIS, improve clinical outcomes, minimize patient trauma, and enable treatment of inoperable patients.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MAESTRO" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "MAESTRO" are provided by the European Opendata Portal: CORDIS opendata.