Explore the words cloud of the CuZnSyn project. It provides you a very rough idea of what is the project "CuZnSyn" about.
The following table provides information about the project.
Coordinator |
IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Organization address contact info |
Coordinator Country | United Kingdom [UK] |
Total cost | 224˙933 € |
EC max contribution | 224˙933 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2019 |
Funding Scheme | MSCA-IF-EF-ST |
Starting year | 2020 |
Duration (year-month-day) | from 2020-06-01 to 2022-05-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE | UK (LONDON) | coordinator | 224˙933.00 |
Carbon dioxide (CO2) is a greenhouse gas that is significantly contributing to climate change. In tandem with advances in sequestering carbon, beneficial uses for CO2 are of high societal importance for developing a sustainable future. One attractive use of CO2 is in its conversion to energy dense fuels (green energy vectors). One such fuel is methanol, made from CO2 via hydrogenation in conjunction with a multimetallic catalyst. The current best industrial (heterogeneous) catalyst incorporates copper and zinc-oxide nanoparticles with an alumina support. A special synergy is observed between the copper (active site) and zinc (reaction promoter), but these species and their connection is poorly defined and remains debated.
This project aims to isolate proximal copper and zinc centres, the fundamental building block for the construction of critical copper–zinc interfaces, within a well-defined, and highly tuneable ligand framework. Once isolated, the binding, activation and interconversion of key intermediates along the CO2 hydrogenation pathway will be meticulously analysed.
Work package 1 involves the synthesis and characterisation of a series of 12 ligands that encompass a range of stereo-electronic profiles, and subsequent isolation of CuZn complexes using these ligands. Work package 2 will use the complexes to study the activation and interconversion of key intermediates along the CO2 hydrogenation pathway to gain mechanistic understanding. Finally, work package 3 will test the most active complexes as catalysts for the direct hydrogenation of CO2 to methanol.
The combination of my skills (multimetallic systems) and the host groups (mechanistic studies) make achieving the project aims realistic. The knowledge harnessed from gaining deep mechanistic understanding of the synergy between copper and zinc during CO2 hydrogenation will be invaluable in developing the next generation of catalysts for methanol production, adding value to a deleterious waste streams.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CUZNSYN" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "CUZNSYN" are provided by the European Opendata Portal: CORDIS opendata.