Coordinatore | UNIVERSITY OF STRATHCLYDE
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | United Kingdom [UK] |
Totale costo | 1˙497˙180 € |
EC contributo | 1˙497˙180 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2011-StG_20101014 |
Funding Scheme | ERC-SG |
Anno di inizio | 2011 |
Periodo (anno-mese-giorno) | 2011-10-01 - 2016-09-30 |
# | ||||
---|---|---|---|---|
1 |
UNIVERSITY OF STRATHCLYDE
Organization address
address: Richmond Street 16 contact info |
UK (GLASGOW) | hostInstitution | 1˙497˙180.10 |
2 |
UNIVERSITY OF STRATHCLYDE
Organization address
address: Richmond Street 16 contact info |
UK (GLASGOW) | hostInstitution | 1˙497˙180.10 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'Designed to meet many of the colossal challenges facing synthetic and organometallic chemists as demanded by current societal, environmental and economic issues, this project will accelerate the development of a innovative mixed-metal chemistry, which combines two metals with markedly different polarities in the same molecule. Initially polar Mg and non-polar Zn “hybrids” will be developed followed by other metal pairs. These hybrids will exhibit a unique chemistry distinct to those of their parent monometallic compounds. Building on our recent pioneering work in this area (PNAS 2010, JACS 2010) that uses a tried and tested metal-structural-inorganic approach that allows rationale design of tailor-made mixed-metal reagents, this novel and ambitious research programme will deliver new chemo- and regioselective organobimetallic reagents designed as transformational tools for a broad spectrum of fundamentally important chemical reactions (deprotonation, metal-halogen exchange, alkylation, reduction, electrophilic amination, cross-couplings, etc), used every day in academia and industry. Catalytic, using cheap environmentally benign inorganic salts as catalysts, as well as stoichiometric advances will be made. Mixed-metal reagents will also be pioneered in Green Chemistry, by screening their reactivity using green solvents (e.g., 2-methyltetrahydrofuran) and ultimately, the holy grail, using water, which would inspire a synthetic revolution. Bulky ligand supported mixed-metal reagents will be constructed to activate organic heterocyclic molecules towards novel cascade reactions. Incorporating transition metals and lanthanides to this hybrid methodology will expand even more their opportunities in synthesis towards the development of hybrid catalysts for cross-coupling reactions as an alternative to expensive Pd and Ni methodologies. The award of an ERC Starting Grant will help the PI to consolidate her research team and propel her to an internationally-leading status.'