HUMAN ROBOT FLUENCY

Embodied Cognitive Models for Fluent Human-Robot Interaction

 Coordinatore INTERDISCIPLINARY CENTER (IDC) HERZLIYA 

 Organization address address: Kanfei Nesharim
city: HERZLIYA
postcode: 46150

contact info
Titolo: Dr.
Nome: Eric
Cognome: Zimmerman
Email: send email
Telefono: +972 9 9527676
Fax: +972 9 9527268

 Nazionalità Coordinatore Israel [IL]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2011-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-09-01   -   2015-08-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    INTERDISCIPLINARY CENTER (IDC) HERZLIYA

 Organization address address: Kanfei Nesharim
city: HERZLIYA
postcode: 46150

contact info
Titolo: Dr.
Nome: Eric
Cognome: Zimmerman
Email: send email
Telefono: +972 9 9527676
Fax: +972 9 9527268

IL (HERZLIYA) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

proposes    human    recent    hri    interaction    embodied    us    models    population    untrained    zone    environments    robots    action    fluent    robot    interact    humans    cognition    applicant   

 Obiettivo del progetto (Objective)

'Robotics is moving from industrial applications into personal and office environments, in part due to converging trends of an aging population, a shrinking workforce, and a decrease in production costs. The research field of Human-Robot Interaction (HRI) studies the models and algorithms necessary for robots to interact with non-professional humans in these new environments. However, most HRI models are structured in a discrete turn-taking framework, based on dialog, planning, and state-action models. This usually results in a rigid and delayed stop-and-go interaction, which is unlike the simultaneous, fluent action coordination humans are used to from each other. This research proposes to bridge this gap by evaluating new computational models enabling fluent coordination in human-robot interaction. The goal is to design robots that interact with untrained humans in a more natural and human-acceptable way, facilitating their integration into homes, offices, hospitals, and workshops. The research proposed is based on recent cognitive and neurological research in embodied cognition, which sheds new light on the how humans coordinate their actions in a fluent manner. It proposes to computationally model these findings - in particular those of perceptual emulators and real-time action predictors - and to implement them in a human-robot collaborative setting. It also proposes to conduct human-subject studies evaluating the benefits of these new models, and their acceptance by untrained users. The project's potential is to suggest new research paths in HRI, extend the current knowledge in embodied cognition, and produce practical outcomes for the design of robotic systems for the general population. Due to the recent return of the applicant to the EU zone from the US, this proposal is also crucial for the reintegration of the applicant into the EU zone, as well as for the successful transfer of knowledge and future collaboration with top US research institutes.'

Altri progetti dello stesso programma (FP7-PEOPLE)

CV-QDAPT (2013)

Continuous-Variable Quantum Detector And Process Tomography

Read More  

TUBEREMODELLING (2012)

"Tubular organ remodelling during development, homeostasis and disease"

Read More  

NIFREI (2010)

"The Effects of Work-Life Balance on Companies, Individuals, and Their Families from Around the World"

Read More