VDW-CMAT

Van der Waals Interactions in Complex Materials

 Coordinatore MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V. 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Germany [DE]
 Totale costo 1˙356˙999 €
 EC contributo 1˙356˙999 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2011-StG_20101014
 Funding Scheme ERC-SG
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-09-01   -   2016-08-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.

 Organization address address: Hofgartenstrasse 8
city: MUENCHEN
postcode: 80539

contact info
Titolo: Dr.
Nome: Alexandre
Cognome: Tkatchenko
Email: send email
Telefono: +49 30 84134720
Fax: +49 30 84134701

DE (MUENCHEN) hostInstitution 1˙356˙999.00
2    MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.

 Organization address address: Hofgartenstrasse 8
city: MUENCHEN
postcode: 80539

contact info
Titolo: Dr.
Nome: Gert
Cognome: Von Helden
Email: send email
Telefono: +49 30 84133100
Fax: +49 30 84133101

DE (MUENCHEN) hostInstitution 1˙356˙999.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

principles    coupled    solids    theory    organic    mechanics    molecular    density    protein    power    binding    materials    interactions    accurate    first    molecules    efficient    vdw    accuracy    modeling    electron    quantum   

 Obiettivo del progetto (Objective)

'Van der Waals (vdW) interactions are ubiquitous in nature, playing a major role in defining the structure, stability, and function for a wide variety of molecules and materials. VdW forces make the existence of molecular liquids and solids possible; they largely control protein-protein and drug-protein binding inside our bodies; they give geckos the ability to “defy gravity” attaching to walls and ceilings. An accurate first-principles description of vdW interactions is extremely challenging, since the vdW dispersion energy arises from the correlated motion of electrons and, in principle, requires many-electron quantum mechanics. Rapid increase in computer power and advances in modeling of vdW interactions have allowed to achieve “chemical accuracy” (1 kcal/mol) for binding between small organic molecules. However, the lack of accurate and efficient methods for large and complex systems hinders truly quantitative predictions of properties and functions of technologically relevant materials. We aim to construct and apply a systematic hierarchy of efficient methods for the modeling of vdW interactions with high accuracy and capacity to predict new phenomena in complex materials. Starting from quantum-mechanical first principles (adiabatic-connection fluctuation-dissipation theorem), we unify concepts from quantum chemistry (linear-response coupled-cluster and many-body perturbation theory), density-functional theory (ground-state electron-density response), and statistical mechanics (coupled-fluctuating-dipole model). Our final goal is to enable long time-scale molecular dynamics simulations with predictive power for large and complex systems of thousands of atoms. The project goes well beyond the presently possible applications and once successful will pave the road towards having a suite of first-principles modeling tools for a wide range of materials, such as biomolecules, nanostructures, solids, and organic/inorganic interfaces.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

CM TURNOVER (2012)

Uncovering the Mechanisms of Cardiomyocyte Differentiation and Dedifferentiation

Read More  

HAPDEGMT (2014)

"Harmonic Analysis, Partial Differential Equations and Geometric Measure Theory"

Read More  

FINET (2013)

Firm Networks Trade and Growth

Read More