SURFARI

Arithmetic of algebraic surfaces

 Coordinatore GOTTFRIED WILHELM LEIBNIZ UNIVERSITAET HANNOVER 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Germany [DE]
 Totale costo 899˙846 €
 EC contributo 899˙846 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2011-StG_20101014
 Funding Scheme ERC-SG
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-10-01   -   2016-09-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    GOTTFRIED WILHELM LEIBNIZ UNIVERSITAET HANNOVER

 Organization address address: Welfengarten 1
city: HANNOVER
postcode: 30167

contact info
Titolo: Ms.
Nome: Elke
Cognome: Buchholz
Email: send email
Telefono: +49 511 762 19180
Fax: +49 511 762 3009

DE (HANNOVER) hostInstitution 899˙846.80
2    GOTTFRIED WILHELM LEIBNIZ UNIVERSITAET HANNOVER

 Organization address address: Welfengarten 1
city: HANNOVER
postcode: 30167

contact info
Titolo: Prof.
Nome: Matthias
Cognome: Schütt
Email: send email
Telefono: +49 511 762 3593
Fax: +49 511 762 5803

DE (HANNOVER) hostInstitution 899˙846.80

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

inner    structure    algebraic    problem    group    surfaces   

 Obiettivo del progetto (Objective)

'This research proposal concerns a fundamental problem in the theory of al- gebraic surfaces which poses one of the most important challenges in order to understand the inner structure of algebraic surfaces beyond the current state of the art. Our research team will investigate in detail the structure of curves on algebraic surfaces which is captured in the Neron-Severi group. In general, it is a widely open problem to decide which shapes this group can take. By de- signing innovative and unconventional approaches at the borderline of arithmetic and geometry, we aim at groundbreaking results that will spark deep insights into the inner structures of algebraic surfaces and lay cornerstones for future investigations.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

TOPOTRONICS (2014)

Topological Josephson devices as a novel platform for creating and controlling non-Abelian anyons

Read More  

VASCMIR (2014)

Vascular remodelling and miRNA therapeutics

Read More  

MOTOGLIA (2012)

"Axoglial synapses, adult myelination and motor skills learning"

Read More