Coordinatore | BEN-GURION UNIVERSITY OF THE NEGEV
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | Israel [IL] |
Totale costo | 1˙500˙000 € |
EC contributo | 1˙500˙000 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2011-StG_20101014 |
Funding Scheme | ERC-SG |
Anno di inizio | 2011 |
Periodo (anno-mese-giorno) | 2011-10-01 - 2016-09-30 |
# | ||||
---|---|---|---|---|
1 |
BEN-GURION UNIVERSITY OF THE NEGEV
Organization address
address: Office of the President - Main Campus contact info |
IL (BEER SHEVA) | hostInstitution | 1˙500˙000.00 |
2 |
BEN-GURION UNIVERSITY OF THE NEGEV
Organization address
address: Office of the President - Main Campus contact info |
IL (BEER SHEVA) | hostInstitution | 1˙500˙000.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'Photovoltaics and liquid fuels are poised as major contributors to the global energy market, promising cleaner, renewable sources of energy than fossil fuels. However, the technologies required to make this possibility a reality are limited by their high cost per kWh, and current share of photovoltaics and liquid fuels in the energy market is thus extremely small. One method of reducing the costs of photovoltaics lies in the use of semiconductor nanocrystals to absorb and convert solar photon energy to usable electricity and liquid fuel. Among the advantages of a nanocrystal-based design for photovoltaics are the requirement for thinner absorbing layers, the less energy-intensive refining processes, and their scalability with respect to photovoltaic production. To address these challenges, I plan to initiate a multidisciplinary research project that comprises three separate, but interrelated and complementary, parts that will be conducted in parallel. The first and the main part will be the preparation of novel hybrid nanostructures that have potential for PV and fuel cells applications. The second will focus on a systematic study of the fundamental processes of charge dynamics in the nanoscale regime. The materials and knowledge generated can then be applied in the third part of the project—development of PV and photoelectrochemical devices with scale-up potential for large-scale solar energy exploitation, and examination of benchmark properties (overall efficiency, I V characteristics, external quantum efficiency, hydrogen and liquid fuel production) of our new hybrid materials and devices. These properties will be used as feedback for the synthesis of more complex hybrid structures and for improving our device assembly methods and the choice of materials and/or composites for the devices.'