FREECO

Freezing Colloids

 Coordinatore CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore France [FR]
 Totale costo 1˙469˙034 €
 EC contributo 1˙469˙034 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2011-StG_20101014
 Funding Scheme ERC-SG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-01-01   -   2016-12-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD

 Organization address address: University Offices, Wellington Square
city: OXFORD
postcode: OX1 2JD

contact info
Titolo: Dr.
Nome: Stephen
Cognome: Conway
Email: send email
Telefono: +44 1865 289800
Fax: +44 1865 289801

UK (OXFORD) beneficiary 169˙994.00
2    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

 Organization address address: Rue Michel -Ange 3
city: PARIS
postcode: 75794

contact info
Titolo: Dr.
Nome: Sylvain Stephane Francois
Cognome: Deville
Email: send email
Telefono: +33 4 32500659
Fax: +33 4 32500904

FR (PARIS) hostInstitution 1˙299˙040.10
3    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

 Organization address address: Rue Michel -Ange 3
city: PARIS
postcode: 75794

contact info
Titolo: Ms.
Nome: Béatrice
Cognome: Saint-Cricq
Email: send email
Telefono: +33 4 91 16 40 08
Fax: +33 4 91 77 93 04

FR (PARIS) hostInstitution 1˙299˙040.10

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

physics    mathematics    freezing    science    breakthroughs    technological    phenomenon    materials    implications    developments    bioinspired    route    engineering    colloids   

 Obiettivo del progetto (Objective)

'The freezing of colloids is an amazingly common phenomenon encountered in many natural and engineering processes such as the freezing of soils, food engineering or cryobiology. It can also be used as a bioinspired, versatile and environmentally-friendly processing route for bioinspired porous materials and composites exhibiting breakthroughs in functional properties. Yet, it is still a puzzling phenomenon with many unexplained features, due to the complexity of the system, the space and time scales at which the process should be investigated and the multidisciplinary approach required to completely apprehend it. The objective is to progress towards a deep understanding of the freezing of colloids through novel in situ observations approaches and mathematical modelling, to exert a better control on the processing route and achieve the full potential of this novel class of bioinspired materials. Materials will be processed and their structure/properties relationships investigated and optimized. This project offers a unique integration of approaches, competences and resources in materials science, chemistry, physics, mathematics and technological developments of observation techniques. For materials science only, the versatility of the process and its control could yield potential breakthroughs in numerous key applications of tremendous human, technological, environmental and economical importance such as catalysis, biomaterials or energy production, and open a whole new field of research. Far-reaching implications beyond materials science are expected, both from the developments in mathematics and physics, and from the implications of colloids freezing in many situations and fields of research.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

CODEMAP (2011)

COmplex Deep-sea Environments: Mapping habitat heterogeneity As Proxy for biodiversity

Read More  

PANDA (2014)

Phylogenetic ANalysis of Diversification Across the tree of life

Read More  

IN-BRAIN (2013)

IN VIVO REPROGRAMMING: A NOVEL ROUTE TO BRAIN REPAIR

Read More