Coordinatore | THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Organization address
address: College Green - contact info |
Nazionalità Coordinatore | Ireland [IE] |
Totale costo | 205˙534 € |
EC contributo | 205˙534 € |
Programma | FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | FP7-PEOPLE-2010-IOF |
Funding Scheme | MC-IOF |
Anno di inizio | 2012 |
Periodo (anno-mese-giorno) | 2012-09-26 - 2015-03-25 |
# | ||||
---|---|---|---|---|
1 |
THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Organization address
address: College Green - contact info |
IE (DUBLIN) | coordinator | 205˙534.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'This proposal aims to develop a career path in academic and industrial research for the proposed fellow by immersing the proposed fellow in an advanced research environment in UC Berkeley, while working on a project that seeks to improve the state-of-the-art technology in renewable energy, an area of increasing importance. The over reliance on fossil fuels causes socio-economic problems, through environmental and sustainability issues. Photovoltaic (PV) and photocatalytic (PC) energy conversion are set to displace fossil fuels in energy production. Current PV devices have a high cost and long payback time due to the complicated techniques involved in production. II-VI semiconducting materials such as Cd(S,Se andTe) display excellent photovoltaic properties, enabling their use in high efficiency PV devices – properties significantly improved when in a low dimensional nanocrystal, such as nanorods (NRs). These NRs can be produced and organised using low-cost, low-energy solution-based methods. Current architecture of devices based on NRs limits efficiency. This project will improve efficiencies in these devices by altering the architecture. Langmuir-Shafer deposition will create II-VI NR/polymer devices with high interface area to maximize efficiency. Heterostructures of these materials will be used to photocatalytically split water in to oxygen and hydrogen – a clean fuel alternative, circumventing electrical engineering problems inherent in PV devices. Micelle formation through phase exchange will improve efficiency over existing PC devices by increased light scattering. These structures can also be made into discrete PV devices, which can be assembled into cooperative large scale devices. The fellow will also acquire complementary skills that will enable him to become an effective researcher through training courses and one-on-one interactions in an international environment and will be re-integrated in a research in Ireland that will utilize the skills acquired.'
A quantitative analysis of single cell variation in transcription during the stabilisation of neural mesodermal cell states in vivo and in vitro
Read More