Coordinatore | VRIJE UNIVERSITEIT BRUSSEL
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | Belgium [BE] |
Totale costo | 1˙276˙620 € |
EC contributo | 1˙276˙620 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2011-StG_20101124 |
Funding Scheme | ERC-SG |
Anno di inizio | 2012 |
Periodo (anno-mese-giorno) | 2012-02-01 - 2017-01-31 |
# | ||||
---|---|---|---|---|
1 |
VRIJE UNIVERSITEIT BRUSSEL
Organization address
address: PLEINLAAN 2 contact info |
BE (BRUSSEL) | hostInstitution | 1˙276˙620.00 |
2 |
VRIJE UNIVERSITEIT BRUSSEL
Organization address
address: PLEINLAAN 2 contact info |
BE (BRUSSEL) | hostInstitution | 1˙276˙620.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'I intend to investigate what cognitive mechanisms give us combinatorial speech. Combinatorial speech is the ability to make new words using pre-existing speech sounds. Humans are the only apes that can do this, yet we do not know how our brains do it, nor how exactly we differ from other apes. Using new experimental techniques to study human behavior and new computational techniques to model human cognition, I will find out how we deal with combinatorial speech. The experimental part will study individual and cultural learning. Experimental cultural learning is a new technique that simulates cultural evolution in the laboratory. Two types of cultural learning will be used: iterated learning, which simulates language transfer across generations, and social coordination, which simulates emergence of norms in a language community. Using the two types of cultural learning together with individual learning experiments will help to zero in, from three angles, on how humans deal with combinatorial speech. In addition it will make a methodological contribution by comparing the strengths and weaknesses of the three methods. The computer modeling part will formalize hypotheses about how our brains deal with combinatorial speech. Two models will be built: a high-level model that will establish the basic algorithms with which combinatorial speech is learned and reproduced, and a neural model that will establish in more detail how the algorithms are implemented in the brain. In addition, the models, through increasing understanding of how humans deal with speech, will help bridge the performance gap between human and computer speech recognition. The project will advance science in four ways: it will provide insight into how our unique ability for using combinatorial speech works, it will tell us how this is implemented in the brain, it will extend the novel methodology of experimental cultural learning and it will create new computer models for dealing with human speech.'
Exploiting hybrids between annual and perennial plant species to identify genes conferring agronomically important traits
Read MoreWeaving the humanities into the web and the web into the humanities. Preserving the cultural heritage of Yemen by creating a universally accessible virtual library of manuscripts
Read More