MUSCLEANDCANCER

Search for novel molecules cross-talking between muscle and cancer with therapeutic potential against cachexia and cancer

 Coordinatore ISTITUTO DI RICERCHE FARMACOLOGICHE MARIO NEGRI 

 Organization address address: Via Giuseppe La Masa 19
city: MILANO
postcode: 20156

contact info
Titolo: Ms.
Nome: Maria Grazia
Cognome: Pezzoni
Email: send email
Telefono: +39 02 39014 304
Fax: +39 02 3900 9728

 Nazionalità Coordinatore Italy [IT]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2010-RG
 Funding Scheme MC-IRG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-06-01   -   2016-05-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    ISTITUTO DI RICERCHE FARMACOLOGICHE MARIO NEGRI

 Organization address address: Via Giuseppe La Masa 19
city: MILANO
postcode: 20156

contact info
Titolo: Ms.
Nome: Maria Grazia
Cognome: Pezzoni
Email: send email
Telefono: +39 02 39014 304
Fax: +39 02 3900 9728

IT (MILANO) coordinator 100˙000.00
2    FONDAZIONE TELETHON

 Organization address address: VIA VARESE 16/B
city: ROMA
postcode: 185

contact info
Titolo: Ms.
Nome: Irene
Cognome: Mearelli
Email: send email
Telefono: +39 06 44015308
Fax: +39 06 44015504

IT (ROMA) participant 0.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

life    muscles    pathway    myokines    strength    endurance    muscle    loss    exercise    metastasis    cachexia    genes    cancer    molecules    cancers    anti    infection    myotubes    resistance    adenoviral    signaling    physical    patients   

 Obiettivo del progetto (Objective)

'Cancer cachexia is a life-threatening syndrome characterized by severe body weight loss, due to depletion of adipose tissue and skeletal muscle, and affects up to 80% of patients with advanced cancers. The rapid loss of muscle mass is the main cause of function impairment, fatigue and respiratory complications, leading to death in 20-48% of cases. To date, no effective treatment is available. By using Ingenuity Pathways Analysis software, I have analyzed the cancer cachexia-specific genes, found previously by others, and discovered a specific signaling pathway altered in muscles of cachectic rats. By over-expressing and repressing genes of this pathway in in vitro (adenoviral infection of myotubes) and in vivo (muscle electroporation of plasmids in mice) approaches, I will dissect the role of this signaling cascade during cachexia. Since agonists and antagonists for this pathway are already available, they will be also tested for their possible protective effects against cancer cachexia. Physical activity extends life span of cancer patients and correlates with lower incidence of many cancers but its modes of action are still unclear. The concept that muscle is an endocrine organ able to release molecules (myokines) is quiet new and opens exciting fields to explore. Interestingly, the unique resistance of muscle to cancer and metastasis makes reasonable that anti-cancer myokines may exist. Their secretion especially during physical activity could explain why exercise protects from cancers and retards its progression. So, I propose to search for novel anti-cancer molecules from exercised muscles by taking advantage of adenoviral infection of myotubes to express molecules able to mimic some of the effects of (strength or endurance) exercise. The isolation of anti-cancer myokines may greatly help cancer patients, especially those that cannot exercise, and may clarify which type of exercise (i.e. strength and/or endurance) could be more beneficial for cancer patients.'

Introduzione (Teaser)

Muscles have a unique resistance to cancer and metastasis. Is it possible to learn the resistance mechanism and use it for anticancer therapies?

Altri progetti dello stesso programma (FP7-PEOPLE)

IQOW (2010)

Integrated Quantum Optics with Waveguides

Read More  

SYNTHSTRIPE (2012)

Synthetic gene regulatory networks for single-stripe gene expression

Read More  

NANOHIGHTC (2010)

Search for novel mechanisms to increase the critical temperature of a superconductor

Read More