SMAC

Statistical machine learning for complex biological data

 Coordinatore ASSOCIATION POUR LA RECHERCHE ET LE DEVELOPPEMENT DES METHODES ET PROCESSUS INDUSTRIELS - ARMINES 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore France [FR]
 Totale costo 1˙496˙004 €
 EC contributo 1˙496˙004 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2011-StG_20101014
 Funding Scheme ERC-SG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-02-01   -   2017-01-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    ASSOCIATION POUR LA RECHERCHE ET LE DEVELOPPEMENT DES METHODES ET PROCESSUS INDUSTRIELS - ARMINES

 Organization address address: Boulevard Saint-Michel 60
city: PARIS
postcode: 75272

contact info
Titolo: Mr.
Nome: Jean-Philippe
Cognome: Vert
Email: send email
Telefono: +33 1 64 69 47 82
Fax: +33 1 64 69 47 05

FR (PARIS) hostInstitution 1˙496˙004.00
2    ASSOCIATION POUR LA RECHERCHE ET LE DEVELOPPEMENT DES METHODES ET PROCESSUS INDUSTRIELS - ARMINES

 Organization address address: Boulevard Saint-Michel 60
city: PARIS
postcode: 75272

contact info
Titolo: Ms.
Nome: Sophie
Cognome: Cousin
Email: send email
Telefono: +33 1 40 51 93 77
Fax: +33 1 46 34 23 05

FR (PARIS) hostInstitution 1˙496˙004.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

data    biological    predictive    inference    statistical   

 Obiettivo del progetto (Objective)

'This interdisciplinary project aims to develop new statistical and machine learning approaches to analyze high-dimensional, structured and heterogeneous biological data. We focus on the cases where a relatively small number of samples are characterized by huge quantities of quantitative features, a common situation in large-scale genomic projects, but particularly challenging for statistical inference. In order to overcome the curse of dimension we propose to exploit the particular structures of the data, and encode prior biological knowledge in a unified, mathematically sound, and computationally efficient framework. These methodological development, both theoretical and practical, will be guided by and applied to the inference of predictive models and the detection of predictive factors for prognosis and drug response prediction in cancer.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

ONCOVIRVAX (2014)

Novel cancer vaccines with virus based cDNA libraries and monitoring for resistant tumour cell populations in prostate cancer

Read More  

TRAM (2012)

Transport at the microscopic interface

Read More  

TMSS (2009)

Topology of Moduli Spaces and Strings

Read More