NLO FOR PV

NonLinear Optics for Photovoltaics

 Coordinatore TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY 

 Organization address address: TECHNION CITY - SENATE BUILDING
city: HAIFA
postcode: 32000

contact info
Titolo: Mr.
Nome: Mark
Cognome: Davison
Email: send email
Telefono: +972 4 829 3097
Fax: +972 4 829 2958

 Nazionalità Coordinatore Israel [IL]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2011-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-04-01   -   2016-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY

 Organization address address: TECHNION CITY - SENATE BUILDING
city: HAIFA
postcode: 32000

contact info
Titolo: Mr.
Nome: Mark
Cognome: Davison
Email: send email
Telefono: +972 4 829 3097
Fax: +972 4 829 2958

IL (HAIFA) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

below    above    solar    efficiency    powered    pvs    threshold    power    nir    laser    energy    bandgap    queisser    limits    intensity    cell    conversion    suns    photons    coherence    shockley    cells    energetic    orders    pv    lasers    magnitude    limit    nlo    photon   

 Obiettivo del progetto (Objective)

'The Shockley Queisser limits the efficiency of single junction solar cells and sets the maximum efficiency for Si solar cells at about 30%. The limit is imposed because of two constraints. First, the energy a solar cell generates from each conversion event is approximately maximized by its bandgap, irrespective of the incoming photon energy. Thus, energetic photons lose most of their energy to heat in the solar cell. Second, a solar cell cannot harness photons at wavelengths longer than its bandgap. Therefore, splitting of energetic photon to two Near-IR (NIR) photons doubles the quantum efficiency and the output energy a PV delivers. Also the fusion of two NIR photons below the bandgap of PV to generate one photons accessible for the PV (energy above the PVs bandgap) bust the potential efficiency of PV above Shockley Queisser limit. Nonlinear optics (NLO) offers efficient frequency conversion. Yet, it cannot contribute to PVs due to operation limits at high intensity and coherence, much above the solar radiation. Solar powered lasers allows to increase intensity and coherence by orders of magnitude, thus it is the missing link between PVs and NLO. But thus far, power threshold of solar laser is above 2000 suns , making it inapplicable for PVs. Here I propose to build solar powered laser at low solar concentration (below 2 suns), which will open the field of NLO for PVs. This proposal is based on my recent experimental demonstration , which enables the reduction of current power threshold of incoherently pumped laser by three orders of magnitude. In addition to PVs, this research opens the way to new high power lasers, and many on-chip applications in spectroscopy, sensing, and communication.'

Altri progetti dello stesso programma (FP7-PEOPLE)

INTERCOM (2012)

New inter-scale techniques for damage analysis of novel composite architectures

Read More  

ECHOROB (2015)

Echo State Networks for Developing Language Robots

Read More  

CULTURAL ENCOUNTERS (2013)

Cross-cultural Encounters – the Travels of Gender Theory and Practice to China and the Nordic Countries

Read More