T2T-VDG

Transition to turbulence in ventilated double glazing

 Coordinatore ASTON UNIVERSITY 

 Organization address address: ASTON TRIANGLE
city: BIRMINGHAM
postcode: B4 7ET

contact info
Titolo: Dr.
Nome: Sotos
Cognome: Generalis
Email: send email
Telefono: +44012 2043639

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 278˙807 €
 EC contributo 278˙807 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2011-IIF
 Funding Scheme MC-IIF
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-09-17   -   2014-09-16

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    ASTON UNIVERSITY

 Organization address address: ASTON TRIANGLE
city: BIRMINGHAM
postcode: B4 7ET

contact info
Titolo: Dr.
Nome: Sotos
Cognome: Generalis
Email: send email
Telefono: +44012 2043639

UK (BIRMINGHAM) coordinator 278˙807.40

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

turbulent    industrial    code    software    fluid    computational    mathematical    flow    engineering    pinpoint    configurations    transition    techniques    tool   

 Obiettivo del progetto (Objective)

'Pioneering numerical techniques, that have not been employed before concurrently, are proposed in this project. They can capture the transition to turbulence of shear flow and in the process offer the capability of proposing methods for the state of the art control of such transitions. The proposed methods can enhance the calculation of fluid flow by identifying the hierarchical bifurcation of the evolving states and can be captured in an engineering orientated software (computational) tool that will aid the real life implementation of these, otherwise, generalised but tried mathematical techniques. In this sense the predictive power of the underlying mathematical modelling techniques, upon which the engineering tool will be crucially dependent, will display their true potential. The novel methods can be used to pinpoint the transition of the flow from its laminar (basic) state to its fully developed (turbulent) state with pinpoint accuracy and for arbitrary geometrical configurations. The ensuing stability analysis will be a unique attribute of this mathematically engineered software. Our software, in brief, that unifies the above mentioned techniques, will be able to oversee the development of the fluid flow throughout its evolution, from birth to turbulent arrival. It is the ultimate aim of this set of programmes to apply the resulting software to complex configurations applicable to a variety of every day engineering configurations. Simple geometries will be considered at first to act as benchmarks and common ground for the two different state of the art software avenues at our disposal: the proprietary code developed at Aston University and a commercially available CFD code. We intend to use the results of our studies for the design and industrial implementation of a new concept that is at the heart of European energy, environment and socioeconomic focus: ventilated double glazing.'

Introduzione (Teaser)

Whether it is blood flow in arteries, oil flow in pipelines or air flow over aircraft wings, fluids generally move chaotically. A new computational toolbox to describe this turbulent flow will have great industrial relevance.

Altri progetti dello stesso programma (FP7-PEOPLE)

CW_SRF (2015)

Optimization of superconducting cavities for CW applications

Read More  

BQOA (0)

Binary Quadratic Optimization and Applications

Read More  

FROM BENCH TO BEDSIDE (2011)

Role of microRNAs 143 and 145 in cardiovascular physiology and disease: from bench to bedside

Read More