FATEMANTLE

The fate and behaviour of volatiles during subduction of oceanic crustal material towards greater mantle depths

 Coordinatore UNIVERSITAET BAYREUTH 

 Organization address address: Universitaetsstrasse 30
city: BAYREUTH
postcode: 95447

contact info
Titolo: Mr.
Nome: Marcus
Cognome: Urban
Email: send email
Telefono: +49 921 55 5351

 Nazionalità Coordinatore Germany [DE]
 Totale costo 167˙390 €
 EC contributo 167˙390 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2011-IIF
 Funding Scheme MC-IIF
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-09-10   -   2015-08-23

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITAET BAYREUTH

 Organization address address: Universitaetsstrasse 30
city: BAYREUTH
postcode: 95447

contact info
Titolo: Mr.
Nome: Marcus
Cognome: Urban
Email: send email
Telefono: +49 921 55 5351

DE (BAYREUTH) coordinator 167˙390.40

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

material    experimental    maximum    contain    time    co    interior    subduction    crustal    nams    volatiles    zones    deep    constraints    mantle    volatile    oceanic    critical    earth       minerals   

 Obiettivo del progetto (Objective)

'The world’s oceans contain up to 5.5 times less water by mass than is believed to exist in the Earth’s interior (i.e. Earth’s mantle and core). Yet the presence of volatiles such as H2O, CO2, C, CH4 (i.e. H-C-O) in the Earth’s interior are often overlooked despite critical for life on Earth.

The chief means of replenishment of the Earth’s interior with volatiles over geological time is via subduction (i.e. the transport of crustal material into the Earth’s deep interior by large-scale tectonic processes) but constraints are very poor as natural samples from the deep Earth’s interior subduction zones are inaccessible. High pressure experimental investigations however can overcome that problem by simulating deep Earth’s mantle conditions and processes.

The research proposed here will experimentally determine the maximum storage capacity, solubility and behaviour of volatile components (CHO) in nominally anhydrous minerals (NAMs; minerals which do not contain essential structural H2O) during subduction of carbonated, hydrated oceanic crustal material into the mantle’s transition zone (410-660 km depth) and lower mantle, by applying a novel experimental approach. This new experimental approach will for the first time enable determination of maximum H2O contents of NAMs in equilibrium with the full phase assemblage in volatile-bearing subducted oceanic crust. This was not achieved in numerous previous studies which concentrated on simple, monomineralic systems.

This fundamental research will allow constraints to be placed on the fluxes of H2O but also CO2 recycled into the mantle at subduction zones, a critical step in the Earth’s overall volatile budget. It will also allow assessment of the influence of such volatiles on many mantle processes including partial melting, metasomatism, litholigical density and seismic velocity variations and others, as volatiles exert a major control on the way mantle lithologies behave chemically and physically.'

Altri progetti dello stesso programma (FP7-PEOPLE)

ENTANGLEMENT 40CAQIP (2009)

Entanglement for quantum information with ion strings

Read More  

GENCAR (2012)

Genetic Control of Gene Expression in Cancer Risk

Read More  

FURIN IN IMMUNITY (2009)

PROPROTEIN CONVERTASE FURIN AS A REGULATOR OF IMMUNE RESPONSES

Read More