COHESIN CONTROL

The mechanism by which cohesin controls gene expression

 Coordinatore THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 2˙421˙212 €
 EC contributo 2˙421˙212 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2011-ADG_20110310
 Funding Scheme ERC-AG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-05-01   -   2017-04-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD

 Organization address address: University Offices, Wellington Square
city: OXFORD
postcode: OX1 2JD

contact info
Titolo: Ms.
Nome: Gill
Cognome: Wells
Email: send email
Telefono: +44 1865 289800
Fax: +44 1865 289801

UK (OXFORD) hostInstitution 2˙421˙212.00
2    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD

 Organization address address: University Offices, Wellington Square
city: OXFORD
postcode: OX1 2JD

contact info
Titolo: Prof.
Nome: Kim Ashley
Cognome: Nasmyth
Email: send email
Telefono: +44 1865 613212
Fax: +44 1865 613213

UK (OXFORD) hostInstitution 2˙421˙212.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

along    tev    acting    chromatin    plasticity    cohesin    ring    cells    gene    altering    developmental    genes    expression    dna    function    transcription    regulating   

 Obiettivo del progetto (Objective)

'How cells retain, lose, and regain developmental plasticity is poorly understood due to ignorance of the molecular mechanisms regulating gene expression. Each gene is regulated by a unique set of factors and as a consequence the trans-acting factors and cis-acting chromatin modification states regulating a given gene are extremely rare. Transcription is affected by events taking place many thousands of base pairs away from the start, a property enabling developmental and evolutionary plasticity, presumably made possible by DNA looping or translocation of factors along chromatin. Most factors regulating a given gene function at many other genes, complicating interpretation of the consequences of altering the activity of such factors. It is difficult to exclude the possibility that phenotypes are knock-on effects. This could be surmounted if it were possible to observe individual genes in real time in three-dimensional space and to analyse the immediate consequences of altering the activity of regulatory factors. Of these, those capable of inter-connecting DNAs or of translocating large distances along chromatin are of interest. Cohesin is such a factor, composed of three core subunits, a pair of Smc proteins and a kleisin subunit, that interact with each other to form a huge tripartite ring, within which it is thought chromatin fibres are entrapped. In proliferating cells, cohesin’s primary function is to connect sister chromatids during DNA replication until the onset of anaphase, possibly by virtue of co-entrapment within a single ring. However, cohesin is present in most quiescent cells and it is becoming clear that it also regulates gene expression and recombination. This proposal has two goals: To image gene expression on polytene chromosomes and to investigate cohesin’s role during ecdysone-induced transcription. The advantage of this system is that we can use micro-injection of TEV protease to inactivate cohesin. A second goal is to develop the TEV system to'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

SCAPDE (2013)

Semi-Classical Analysis and Partial Differential Equations

Read More  

COLOURATOM (2013)

Colouring Atoms in 3 Dimensions

Read More  

MUSICEXPERIMENT21 (2013)

Experimentation versus Interpretation: exploring New Paths in Music Performance in the Twenty-First Century

Read More