BACTINSECT

Molecular mechanisms in the establishment of disease transmission by invertebrate vectors

 Coordinatore FUNDACAO CALOUSTE GULBENKIAN 

 Organization address address: AVENIDA DE BERNA 45A
city: LISBOA
postcode: 1000

contact info
Titolo: Mr.
Nome: José Mario
Cognome: Leite
Email: send email
Telefono: 351214000000
Fax: 351214000000

 Nazionalità Coordinatore Portugal [PT]
 Totale costo 151˙426 €
 EC contributo 151˙426 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2011-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-06-01   -   2015-05-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    FUNDACAO CALOUSTE GULBENKIAN

 Organization address address: AVENIDA DE BERNA 45A
city: LISBOA
postcode: 1000

contact info
Titolo: Mr.
Nome: José Mario
Cognome: Leite
Email: send email
Telefono: 351214000000
Fax: 351214000000

PT (LISBOA) coordinator 151˙426.80

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

bacteria    simple    quorum    symbiosis    evf    organisms    genetic    insect       erwinia    carotovorum    interactions    transmission    mechanisms    sensing    host    bacterial    melanogaster   

 Obiettivo del progetto (Objective)

Symbiosis is a major adaptive process allowing bacteria to interact with other organisms to colonise diverse and adverse environments. The genetic mechanisms behind these symbioses are poorly understood despite the fact that some have a major weight on human health and/or welfare. The goal of this project is to investigate the molecular mechanisms involved in monospecific bacterial-host interactions, in particular those occurring between invertebrates and bacteria leading to disease transmission. As a tool, I will use a simple symbiosis model involving Drosophila melanogaster and Pectobacterium carotovorum (formerly Erwinia carotovora), two genetically tractable organisms which will enable the contributions from both the host vector and the bacterial infective agent to be studied. We predict that the genetic determinants of bacterial-host interactions do not differ much and in several cases may rely on a simple genetic basis: the acquisition of a single gene allowing bacteria to colonize the gut of the host. To confirm this hypothesis, we will study the role of EVF (Erwinia virulence factor) in the symbiotic relationship between P. carotovorum and D. melanogaster as well as that of EVF homologues in Photorhabdus luminescens and Xenorhabdus nematophila, both specific nematode symbionts and insect pathogens. In addition, we will dissect the cell-signalling systems, including bacterial quorum sensing, in the insect-borne transmission of P. carotovorum and study the impact of quorum-sensing interference (quorum quenching) in its prevention.

Altri progetti dello stesso programma (FP7-PEOPLE)

WORMPROLOC (2012)

"The subnuclear relocation of promoters during development, and following stress induction in C. elegans"

Read More  

DECIMOL (2014)

Decoupled Insulator-Supported Molecules

Read More  

GOLEM (2010)

Realistic Virtual Humans

Read More