Coordinatore | LEIBNIZ-INSTITUT FUR POLYMERFORSCHUNG DRESDEN EV
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | Germany [DE] |
Totale costo | 1˙469˙646 € |
EC contributo | 1˙469˙646 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2012-StG_20111012 |
Funding Scheme | ERC-SG |
Anno di inizio | 2012 |
Periodo (anno-mese-giorno) | 2012-10-01 - 2017-09-30 |
# | ||||
---|---|---|---|---|
1 |
UNIVERSITAET BAYREUTH
Organization address
address: Universitaetsstrasse 30 contact info |
DE (BAYREUTH) | beneficiary | 807˙616.96 |
2 |
LEIBNIZ-INSTITUT FUR POLYMERFORSCHUNG DRESDEN EV
Organization address
address: HOHE STRASSE 6 contact info |
DE (DRESDEN) | hostInstitution | 662˙029.04 |
3 |
LEIBNIZ-INSTITUT FUR POLYMERFORSCHUNG DRESDEN EV
Organization address
address: HOHE STRASSE 6 contact info |
DE (DRESDEN) | hostInstitution | 662˙029.04 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
The concept of optical metamaterials has opened completely new perspectives for manipulation of electromagnetic radiation. In contrast to homogenous materials, metamaterials enable qualitatively new features like negative index of refraction. These give rise to new fundamental physical effects, but as well to completely new applications like super-lensing or loss-free molding of the flow of light. Still, practical demonstrations of metamaterials for the near-IR and visible frequency range are scarce and limited to microscopic sizes. This is due to the fact that their assembly relies on complex and resource-consuming lithographic processes, which cannot be up-scaled well. This proposal aims at establishing a radically different assembly route for metamaterials, which is up-scalable to macroscopic areas and greatly reduces processing effort. The methodology relies on the synthesis of tailored colloidal building blocks, so-called meta-atoms, which combine metals and insulators in a well defined geometry. These meta-atoms will subsequently be assembled into hierarchical structures using templates fabricated by controlled wrinkling of elastomeric substrates. The use of mechanical instabilities in template formation eliminates lithographic steps in materials assembly. Structures and assembly processes will be optimized based on theory and simulation and morphological and optical properties will be investigated on meta-atom and metamaterials level. We target negative-index metamaterials, metamaterials for transformation optics and a new class of elastically deformable metamaterials. Upscaling of metamaterial formation on macroscopic dimensions will become feasible and the materials will become available for a broader academic and industrial community, making them in the mid-term available for applications in energy (light harvesting, light concentrators), information (manipulation of light flow) and medical technology (sensing).