ODORSPACE

Predicting odor perception from odorant structure and neural activity in the olfactory system

 Coordinatore WEIZMANN INSTITUTE OF SCIENCE 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Israel [IL]
 Totale costo 1˙596˙000 €
 EC contributo 1˙596˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2007-StG
 Funding Scheme ERC-SG
 Anno di inizio 2008
 Periodo (anno-mese-giorno) 2008-08-01   -   2013-07-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    WEIZMANN INSTITUTE OF SCIENCE

 Organization address address: HERZL STREET 234
city: REHOVOT
postcode: 7610001

contact info
Titolo: Ms.
Nome: Talia
Cognome: Tzahor
Email: send email
Telefono: +972 8 934 4026
Fax: +972 8 934 4165

IL (REHOVOT) hostInstitution 0.00
2    WEIZMANN INSTITUTE OF SCIENCE

 Organization address address: HERZL STREET 234
city: REHOVOT
postcode: 7610001

contact info
Titolo: Prof.
Nome: Noam
Cognome: Sobel
Email: send email
Telefono: +972 8 934 6253
Fax: +972 8 934 6254

IL (REHOVOT) hostInstitution 0.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

audition    predicts    structure    molecular    framework    olfactory    length    chain    olfaction    wavelength    dimensions    probed    hypothesis    linking    carbon    frequency    perception    stimulus    scientists    vision    critical    coding    humans    space    physical    odor    odorant    probe    neural   

 Obiettivo del progetto (Objective)

'The rules linking odor perception to odorant structure are unknown. No scientist nor perfumer can predict an odor based on its molecular structure, or decipher a molecular structure based on its smell. It is this puzzle we aim to solve. In vision and audition coding was probed by linking critical physical stimulus dimensions (wavelength/frequency) to patterns of neural activity. But what are the critical physical dimensions in olfaction? Scientists have probed this by linking restricted physico-chemical aspects of the stimulus, e.g., carbon chain-length, to neural activity. However, the olfactory system did not evolve to decode carbon chain-length, but rather to encode the world around us as revealed in olfactory perception. With this in mind we developed a novel perception-based olfactory space with tangible olfactory axes, based on statistical dimension-reduction of perceptual estimates obtained from humans. In Aim 1 we will test the hypothesis that our generated space predicts olfactory perception in humans. In Aim 2 we will test the hypothesis that our generated space predicts odorant-induced neural activity in olfactory cortex (using fMRI) and epithelium (using novel methods for measurement from human neurons in vivo, methods then further explored as a potential diagnostic tool for Alzheimer's disease). In Aim 3 we will test the hypothesis that our generated space explains neural activity previously measured in the olfactory system across species. In Aim 4 we will use this framework to tune an artificial nose for medical diagnostics. In vision and audition scientists can probe the system within agreed dimensions (color/wavelength; pitch/frequency). Similarly, our proposal generates an olfactory space where one can systematically probe molecular receptor tuning-curves, cellular spatial and temporal coding schemes, as well as higher-order perception. In other words, we propose a common framework for olfaction research.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

QITBOX (2014)

Quantum Information Theory with black BOXes

Read More  

LT-NRBS (2013)

Lab-in-a-tube and Nanorobotic biosensors

Read More  

DAMONA (2013)

Mutation and Recombination in the Cattle Germline: Genomic Analysis and Impact on Fertility

Read More