Coordinatore | BAR ILAN UNIVERSITY
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | Israel [IL] |
Totale costo | 1˙497˙990 € |
EC contributo | 1˙497˙990 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2012-StG_20111109 |
Funding Scheme | ERC-SG |
Anno di inizio | 2013 |
Periodo (anno-mese-giorno) | 2013-02-01 - 2018-01-31 |
# | ||||
---|---|---|---|---|
1 |
BAR ILAN UNIVERSITY
Organization address
address: BAR ILAN UNIVERSITY CAMPUS contact info |
IL (RAMAT GAN) | hostInstitution | 1˙497˙990.00 |
2 |
BAR ILAN UNIVERSITY
Organization address
address: BAR ILAN UNIVERSITY CAMPUS contact info |
IL (RAMAT GAN) | hostInstitution | 1˙497˙990.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'There are several bottlenecks that hinder certain aspects of proteomics, in particular, incompatibility of high throughput technologies with certain protein types or modifications, low sensitivity and lack of quantitative data. I have developed a microfluidics affinity assay compatible with transmembrane proteins and post-translational modifications that is highly sensitive and can provide quantitative data.
The primary objective of this proposal is to bioengineer, using the abovementioned building blocks, a multi-functional microfluidic-based human protein arrays. The platform will enable addressing important scientific questions not otherwise possible. Specifically, the process of DNA demethylation, which is poorly characterised due to technological limitations. The biological aspects of chromatin methylation and their regulators that are crucial for cell differentiation and disease will be studied.
Work in MuDLOC will include the following: i) Bioengineering of a microfluidic-based platform that expresses thousands of human genes; ii) Design new tools for post-translational modifications and chromatin modifications; iii) Search for chromatin modifiers and their regulators; and iv) Exploration of specific inhibitors using a microfluidic inhibitor screen.
Beyond studying chromatin methylation from a new perspective, MuDLOC will greatly benefit a plethora of disciplines, such as proteomics, genomics and cancer research. At the end of the project my vision is to capture under one platform a whole pathway, including protein interactions, post-translational modifications and chromatin modifications.'