MULTIGEVOS

The other side of optogenetics: multicolored genetically encoded hybrid voltage sensors (GEVOS) for ultrafast membrane potential measurements in cortical microcircuits

 Coordinatore UNIVERSITAETSKLINIKUM BONN 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Germany [DE]
 Totale costo 3˙437˙138 €
 EC contributo 3˙437˙138 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2013-ADG
 Funding Scheme ERC-AG
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-02-01   -   2019-01-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITAETSKLINIKUM BONN

 Organization address address: Sigmund-Freud-Strasse 25
city: BONN
postcode: 53105

contact info
Titolo: Ms.
Nome: Beate
Cognome: Becker
Email: send email
Telefono: +49 228 287 19454
Fax: +49 228 287 9019454

DE (BONN) hostInstitution 3˙437˙138.00
2    UNIVERSITAETSKLINIKUM BONN

 Organization address address: Sigmund-Freud-Strasse 25
city: BONN
postcode: 53105

contact info
Titolo: Prof.
Nome: Istvan
Cognome: Mody
Email: send email
Telefono: +49 228 6885 270
Fax: +49 228 6885 294

DE (BONN) hostInstitution 3˙437˙138.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

types    sensing    genetically    colors    cell    recording    microcircuits    resolution    optogenetics    brain    functioning    optical    time    gevos    unprecedented    technique    temporal    ultrafast    voltage    multiple    simultaneously    function    neuronal    encoded   

 Obiettivo del progetto (Objective)

'Optogenetics are used to activate or silence specific sets of neurons, intracellular signaling pathways, or to examine brain structure at an unprecedented detail. The only optogenetic approach lagging behind all others is the genetically encoded optical monitoring of multi-neuronal activity at a time resolution of single action potentials. Such ultrafast (<1 ms) resolution is important to understand network function in healthy and diseased nervous systems because timing of neuronal firing and synchrony are the foremost determinants of brain function. Techniques exist to measure membrane voltage and/or cellular activity using optical probes, but all have drawbacks either in their genetic targeting, optical sensitivity and/or temporal resolution. Recent developments using genetically encoded hybrid voltage sensor (GEVOS) methodology showed that this approach has an excellent potential to become an ultrafast voltage sensing system. The GEVOS technique can easily be adapted to work with multiple colors simultaneously, thus recording the activities of genetically distinct cell types in the same preparation. The overall objective of this proposal is to advance the GEVOS method so that it can be used with multiple colors simultaneously in at least two different genetically targetable cell types. Two major advances are sought after in this proposal: a technical/ methodological innovation (improve upon the GEVOS technique and extend it to two fluorescent proteins) and a scientific vision. The latter relates to gaining insights into the parallel functioning of local microcircuits and the optical recording of the concurrent behavior of pre- and postsynaptic elements during GABAergic inhibition. These studies will advance high temporal resolution optical voltage sensing (the other side of optogenetics) and will provide an unprecedented look at the functioning of cortical microcircuits with their specific components monitored at the same time..'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

VIDA (2014)

Transforming Raw Data into Information through Virtualization

Read More  

FLEXBOT (2012)

Flexible object manipulation based on statistical learning and topological representations

Read More  

STRUBOLI (2011)

Structure and Bonding at Oxide-Liquid Interfaces

Read More