NANOPDT

Efficient Tumor Targeting and Therapy Using Near-Infrared Nanoparticles

 Coordinatore UNIVERSITE JOSEPH FOURIER GRENOBLE 1 

 Organization address address: "Avenue Centrale, Domaine Universitaire 621"
city: GRENOBLE
postcode: 38041

contact info
Titolo: Mr.
Nome: Yann
Cognome: Le Roux
Email: send email
Telefono: +33 4 76 51 44 88
Fax: +33 4 76 63 59 56

 Nazionalità Coordinatore France [FR]
 Totale costo 268˙555 €
 EC contributo 268˙555 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2011-IOF
 Funding Scheme MC-IOF
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-11-01   -   2015-10-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITE JOSEPH FOURIER GRENOBLE 1

 Organization address address: "Avenue Centrale, Domaine Universitaire 621"
city: GRENOBLE
postcode: 38041

contact info
Titolo: Mr.
Nome: Yann
Cognome: Le Roux
Email: send email
Telefono: +33 4 76 51 44 88
Fax: +33 4 76 63 59 56

FR (GRENOBLE) coordinator 268˙555.20

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

binding    nanoparticles    tumor    approved    pdt    physicochemical    polymer    solve    fluorescent    particles    tuned    fellow    photosensitizer   

 Obiettivo del progetto (Objective)

'Photodynamic Therapy (PDT) is a clinically approved cancer treatment relying on the use of a photosensitizer, i.e., a fluorescent molecule producing cytotoxic species upon irradiation with light. PDT also provides the ability to image and locally treat diseased tissues without ionizing radiations, thus sparing healthy tissue. Yet, only five photosensitizers are now approved for clinical applications and all suffer from serious drawbacks, including low selectivity and skin sensitization. Photosensitizer-loaded nanoparticles could potentially solve these problems. They can accumulate at the site of tumors by either passive or active targeting. Their physicochemical properties can also be tuned to accelerate clearance, and reduce non-specific binding. In this study, we propose to investigate a novel class of polymer-based organic nanoparticles whose most relevant physicochemical properties can easily be tuned by controlling synthesis parameters. Benefiting from expertise of researchers at the Beth Israel Deaconess Medical Center (Boston, MA, United States), the research fellow will design a wide range of polymer fluorescent nanoparticles. These particles will be tested to find a formulation with optimal blood half-life, low non-specific binding and good targeting capabilities. The research fellow will then synthesize and test the most efficient particles at the Institut Albert Bonniot (Grenoble, France) on head and neck tumor rodent models using 2D and 3D fluorescence imaging. The PDT efficacy will be monitored by following tumor growth and survival rate of the animals. This fellowship application has the potential to solve a longstanding problem in PDT while providing outstanding international training and promoting the career of a talented European researcher.'

Altri progetti dello stesso programma (FP7-PEOPLE)

PTRCODE (2014)

Systematic study of post-transcriptional regulation mediated by RNA-binding proteins and miRNAs

Read More  

PISARSCOV (2009)

"SEVERE ACUTE RESPIRATORY SYNDROME (SARS): DESIGN, SYNTHESIS, IDENTIFICATION, AND EVALUATION OF NOVEL NON-PEPTIDIC INHIBITORS OF MAIN PROTEASE EMPLOYING DYNAMIC LIGATION SCREENING (DLS)"

Read More  

ISAQS (2010)

"Integrability, Symmetry and Quantum Space-time"

Read More