Coordinatore | KING'S COLLEGE LONDON
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | United Kingdom [UK] |
Totale costo | 1˙491˙592 € |
EC contributo | 1˙491˙592 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2012-StG_20111012 |
Funding Scheme | ERC-SG |
Anno di inizio | 2012 |
Periodo (anno-mese-giorno) | 2012-12-01 - 2017-11-30 |
# | ||||
---|---|---|---|---|
1 |
KING'S COLLEGE LONDON
Organization address
address: Strand contact info |
UK (LONDON) | hostInstitution | 1˙491˙592.80 |
2 |
KING'S COLLEGE LONDON
Organization address
address: Strand contact info |
UK (LONDON) | hostInstitution | 1˙491˙592.80 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'Advances in numerical methods and three-dimensional imaging techniques have enabled the quantification of cardiovascular mechanics in subject-specific anatomic and physiologic models. Research efforts have been focused mainly on three areas: pathogenesis of vascular disease, development of medical devices, and virtual surgical planning. However, despite great initial promise, the actual use of patient-specific computer modelling in the clinic has been very limited. Clinical diagnosis still relies entirely on traditional methods based on imaging and invasive measurements and sampling. The same invasive trial-and-error paradigm is often seen in vascular disease research, where animal models are used profusely to quantify simple metrics that could perhaps be evaluated via non-invasive computer modelling techniques. Lastly, medical device manufacturers rely mostly on in-vitro models to investigate the anatomic variations, arterial deformations, and biomechanical forces needed for the design of stents and stent-grafts. In this project, I aim to develop an integrated image-based computer modelling framework for subject-specific cardiovascular simulation with dynamically adapting boundary conditions capable of representing alterations in the physiologic state of the patient. This computer framework will be directly applied in clinical settings to complement and enhance current diagnostic practices, working towards the goal of personalized cardiovascular medicine.'