ARIPHYHIMO

Arithmetic and physics of Higgs moduli spaces

 Coordinatore ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Switzerland [CH]
 Totale costo 1˙304˙945 €
 EC contributo 1˙304˙945 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2012-ADG_20120216
 Funding Scheme ERC-AG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-04-01   -   2018-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

 Organization address address: BATIMENT CE 3316 STATION 1
city: LAUSANNE
postcode: 1015

contact info
Titolo: Ms.
Nome: Caroline
Cognome: Vandevyver
Email: send email
Telefono: +41 21 693 4977
Fax: +41 21 693 55 85

CH (LAUSANNE) hostInstitution 1˙304˙945.00
2    ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

 Organization address address: BATIMENT CE 3316 STATION 1
city: LAUSANNE
postcode: 1015

contact info
Titolo: Prof.
Nome: Tamas
Cognome: Hausel
Email: send email
Telefono: 412169000000
Fax: 41219630350

CH (LAUSANNE) hostInstitution 1˙304˙945.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

algebras    duality    string    theory    higgs    bundles    topology    conjectures    moduli    langlands   

 Obiettivo del progetto (Objective)

'The proposal studies problems concerning the geometry and topology of moduli spaces of Higgs bundles on a Riemann surface motivated by parallel considerations in number theory and mathematical physics. In this way the proposal bridges various duality theories in string theory with the Langlands program in number theory.

The heart of the proposal is a circle of precise conjectures relating to the topology of the moduli space of Higgs bundles. The formulation and motivations of the conjectures make direct contact with the Langlands program in number theory, various duality conjectures in string theory, algebraic combinatorics, knot theory and low dimensional topology and representation theory of quivers, finite groups and algebras of Lie type and Cherednik algebras.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

INCEL (2009)

Revealing the molecular architecture of integrin mediated cell adhesion

Read More  

FCCA (2011)

Five Challenges in Computational Anatomy

Read More  

MIRSPECIFICITY (2014)

Spatio-temporal specificity of miRNA function

Read More