DEATHSWITCHING

Identifying genes and pathways that drive molecular switches and back-up mechanisms between apoptosis and autophagy

 Coordinatore WEIZMANN INSTITUTE OF SCIENCE 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Israel [IL]
 Totale costo 2˙500˙000 €
 EC contributo 2˙500˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2012-ADG_20120314
 Funding Scheme ERC-AG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-03-01   -   2018-02-28

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    WEIZMANN INSTITUTE OF SCIENCE

 Organization address address: HERZL STREET 234
city: REHOVOT
postcode: 7610001

contact info
Titolo: Ms.
Nome: Gabi
Cognome: Bernstein
Email: send email
Telefono: 97289346728
Fax: 97289344165

IL (REHOVOT) hostInstitution 2˙500˙000.00
2    WEIZMANN INSTITUTE OF SCIENCE

 Organization address address: HERZL STREET 234
city: REHOVOT
postcode: 7610001

contact info
Titolo: Prof.
Nome: Adi
Cognome: Kimchi
Email: send email
Telefono: +972 8 934 2428
Fax: +972 8 931 5938

IL (REHOVOT) hostInstitution 2˙500˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

activate    programmed    apoptotic    dependent    cell    death    autophagic    necrosis    pathways    selective    pro    back    mechanisms    molecular    pcd    survival    apoptosis    protein    switches    proteins    degradation    autophagy   

 Obiettivo del progetto (Objective)

'A cell’s decision to die is governed by multiple input signals received from a complex network of programmed cell death (PCD) pathways, including apoptosis and programmed necrosis. Additionally, under some conditions, autophagy, whose function is mainly pro-survival, may act as a back-up death pathway. We propose to apply new approaches to study the molecular basis of two important questions that await resolution in the field: a) how the cell switches from a pro-survival autophagic response to an apoptotic response and b) whether and how pro-survival autophagy is converted to a death mechanism when apoptosis is blocked. To address the first issue, we will screen for direct physical interactions between autophagic and apoptotic proteins, using the protein fragment complementation assay. Validated pairs will be studied in depth to identify built-in molecular switches that activate apoptosis when autophagy fails to restore homeostasis. As a pilot case to address the concept of molecular ‘sensors’ and ‘switches’, we will focus on the previously identified Atg12/Bcl-2 interaction. In the second line of research we will categorize autophagy-dependent cell death triggers into those that directly result from autophagy-dependent degradation, either by excessive self-digestion or by selective protein degradation, and those that utilize the autophagy machinery to activate programmed necrosis. We will identify the genes regulating these scenarios by whole genome RNAi screens for increased cell survival. In parallel, we will use a cell library of annotated fluorescent-tagged proteins for measuring selective protein degradation. These will be the starting point for identification of the molecular pathways that convert survival autophagy to a death program. Finally, we will explore the physiological relevance of back-up death mechanisms and the newly identified molecular mechanisms to developmental PCD during the cavitation process in early stages of embryogenesis.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

ECAP (2012)

Efficient Cryptographic Arguments and Proofs

Read More  

GAGAUTOSYN (2012)

Automated Glycosaminoglycan Synthesis to Access Defined Oligosaccharides for Diagnostic and Therapeutic Applications

Read More  

IBDLIPIDS (2014)

Lipid antigens in intestinal inflammation and tumor development

Read More