FERMISITE

Strongly correlated fermions in optical lattices with single-site resolution

 Coordinatore UNIVERSITY OF STRATHCLYDE 

 Organization address address: Richmond Street 16
city: GLASGOW
postcode: G1 1XQ

contact info
Titolo: Mr.
Nome: Martin
Cognome: Gregory
Email: send email
Telefono: +44 141 548 2524
Fax: +44 141 552 4409

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 221˙606 €
 EC contributo 221˙606 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2012-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-03-01   -   2015-02-28

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITY OF STRATHCLYDE

 Organization address address: Richmond Street 16
city: GLASGOW
postcode: G1 1XQ

contact info
Titolo: Mr.
Nome: Martin
Cognome: Gregory
Email: send email
Telefono: +44 141 548 2524
Fax: +44 141 552 4409

UK (GLASGOW) coordinator 221˙606.40

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

ultracold    particle    site    simulate    lattices    atom    fermionic    insulators    resolution    model    lattice    optical    atoms    fermions    correlated    trap    body    become    detection    quantum    single    condensed   

 Obiettivo del progetto (Objective)

'Ultracold atoms in optical lattices offer previously unparalleled possibilities to simulate quantum many-body effects with almost full control and detection at the single particle level. Recently, in-situ-imaging with single-atom resolution has become available for bosonic rubidium atoms, but an experimental demonstration of the single-site-resolved detection of fermions is still missing. The aim of this research project is to detect and to manipulate strongly correlated fermionic quantum systems in an optical lattice by means of a specially designed microscope objective with single-site and single-atom resolution. This will allow us to simulate several seminal models of condensed matter physics, in particular the Fermi-Hubbard model, which is conjectured to be a key model for high-Tc superconductivity. Probing strongly correlated systems at this most fundamental, single-particle level is a fantastic advantage over the present techniques which use time-of-flight images. Gaining access to the in-trap atom distribution of the fermions with single-atom resolution will enable the precise characterization of spatial order, temperature, and entropy distribution of fermionic many-body states, such as fermionic Mott insulators, band insulators, metallic phases or Néel antiferromagnets. Furthermore, spin manipulations on the scale of individual lattice sites can locally perturb the system, and the ensuing dynamical in-trap evolution can be recorded with unprecedented resolution. By simulating condensed matter systems with ultracold fermionic atoms in optical lattices, this project will help to make Richard Feynman’s vision of a quantum simulator become a reality.'

Altri progetti dello stesso programma (FP7-PEOPLE)

BIOCHARISMA (2013)

Sustainable use of Biochar in Mediterranean Agriculture

Read More  

LEAGUE (2012)

Low-Energy Aspects of Gauge Unifications and their Experimental Implications

Read More  

DISCHROM (2009)

Chromatin diseases: from basic mechanisms to therapy

Read More