MEQUIP

Memory-enhanced photonic quantum information processing

 Coordinatore THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

 Organization address address: University Offices, Wellington Square
city: OXFORD
postcode: OX1 2JD

contact info
Titolo: Ms.
Nome: Gill
Cognome: Wells
Email: send email
Telefono: +44 1865 289800
Fax: +44 1865 289801

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 221˙606 €
 EC contributo 221˙606 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2012-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-05-01   -   2015-04-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD

 Organization address address: University Offices, Wellington Square
city: OXFORD
postcode: OX1 2JD

contact info
Titolo: Ms.
Nome: Gill
Cognome: Wells
Email: send email
Telefono: +44 1865 289800
Fax: +44 1865 289801

UK (OXFORD) coordinator 221˙606.40

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

optical    time    complexity    photonics    quantum    memories    light    memory    platform    processors   

 Obiettivo del progetto (Objective)

'The current complexity of optical quantum information processors is critically restricted by the scalability of quantum photonics. We will lessen this constraint by demonstrating a scalable platform based on an available quantum memory that achieves high time-bandwidth product and low noise. Quantum memories enable temporal multiplexing to create ideally deterministic routines from inherently probabilistic processes, such as those based on quantum measurements. We will employ this strategy to construct a unique source of quantum light from four synchronised heralded single-photon sources. We will develop an integrated memory-based quantum photonics platform with sufficient performance to achieve complex quantum information processing tasks with more than twenty photons distributed over as many modes. A second role for quantum memories uses light-matter quantum interference to effect processing of stored information. This potential unlocks novel and efficient QIP protocols and a compelling alternate architecture to chip-based processors. We will demonstrate a memory-based programmable three-port linear quantum optical network that operates on time-bins. The outcome of this project is a new memory-enhanced quantum photonics platform that will enable access to a new complexity regime for quantum information processing to explore the physics of complex quantum systems.'

Altri progetti dello stesso programma (FP7-PEOPLE)

COPING (2013)

Policy implementation in stressful times: Analyzing coping strategies of civil servants

Read More  

CONEURON (2011)

Drawing neuronal circuits without seeing them

Read More  

LIQUEFCTN SILTYSANDS (2012)

INFLUENCE OF SILT CHARACTERISTICS ON LIQUEFACTION BEHAVIOR OF SILTY SANDS

Read More