CONNECTMS

Brain connectomics: modeling disconnection syndrome in Multiple Sclerosis

 Coordinatore CONSORCI INSTITUT D'INVESTIGACIONS BIOMEDIQUES AUGUST PI I SUNYER 

 Organization address address: CALLE ROSSELLO 149 PUERTA BJS
city: BARCELONA
postcode: 8036

contact info
Titolo: Ms.
Nome: Pastora
Cognome: Martinez Samper
Email: send email
Telefono: 34932275707
Fax: 34932279205

 Nazionalità Coordinatore Spain [ES]
 Totale costo 173˙370 €
 EC contributo 173˙370 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2012-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-04-01   -   2015-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    CONSORCI INSTITUT D'INVESTIGACIONS BIOMEDIQUES AUGUST PI I SUNYER

 Organization address address: CALLE ROSSELLO 149 PUERTA BJS
city: BARCELONA
postcode: 8036

contact info
Titolo: Ms.
Nome: Pastora
Cognome: Martinez Samper
Email: send email
Telefono: 34932275707
Fax: 34932279205

ES (BARCELONA) coordinator 173˙370.60

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

mri    group    connectivity    brain    ms    dsi    imaging    clinical    organization    disease    host    cognitive    techniques    connectomics    fmri    insights    models   

 Obiettivo del progetto (Objective)

'Brain architecture or connectivity is complex and defines the basis of cognitive processing. Recent studies have revealed new insights about its organization by the combination of structural Magnetic Resonance Imaging (MRI) such as tractography (using Diffusion Spectrum Imaging, DSI) and functional MRI (fMRI) using resting-state. However, the complexity of brain connectivity and technical limitations prevent a comprehensive understanding of its organization. For this reason, the use of disease models producing disconnection syndromes, such as Multiple Sclerosis (MS) are important approaches for improving our understanding about brain organization. Moreover, MRI analysis of MS by DSI and fMRI can provide new insights on MS pathogenesis and development of new biomarkers of the disease, helping to solve the “clinical-MRI paradox”, namely the low correlation between MRI findings and clinical course. In this proposal we present new models for studying brain connectivity by analyzing MS. We intend to use state-of-the-art approaches in brain connectomics and apply inter-disciplinary techniques ranging form different MRI modalities to network analysis and image processing techniques. The candidate has a strong technical background and a PhD in a very related area - the technical aspects of the imaging techniques. The host group is strong in applied clinical research, with focus on MS, imaging, cognitive sciences and systems neurosciences. The host group has several ongoing collaborations with top researchers in cognitive neuroscience and connectomics. Finally, the findings and techniques that will be developed in this project can be transferable to clinical practice but also with minor modifications applied to similar neurological diseases and the research involving general questions on how the brain functions.'

Altri progetti dello stesso programma (FP7-PEOPLE)

CHEMI (2011)

Fascinating Chemistry

Read More  

MAPPING THE CELL (2009)

Mapping the Cell

Read More  

RIISPAD (2008)

Role of innate immunity in the pathogenesis of autoimmune diseases

Read More