APOQUANT

The quantitative Bcl-2 interactome in apoptosis: decoding how cancer cells escape death

 Coordinatore EBERHARD KARLS UNIVERSITAET TUEBINGEN 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Germany [DE]
 Totale costo 1˙462˙900 €
 EC contributo 1˙462˙900 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2012-StG_20111109
 Funding Scheme ERC-SG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-04-01   -   2018-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.

 Organization address address: Hofgartenstrasse 8
city: MUENCHEN
postcode: 80539

contact info
Titolo: Dr.
Nome: Richard
Cognome: Segar
Email: send email
Telefono: +49 711 689 3474
Fax: +49 711 689 3612

DE (MUENCHEN) beneficiary 93˙597.96
2    EBERHARD KARLS UNIVERSITAET TUEBINGEN

 Organization address address: GESCHWISTER-SCHOLL-PLATZ
city: TUEBINGEN
postcode: 72074

contact info
Titolo: Mrs.
Nome: Elisabeth
Cognome: Baier
Email: send email
Telefono: +49 7071 2978760
Fax: +49 7071 2978760

DE (TUEBINGEN) hostInstitution 1˙369˙302.04
3    EBERHARD KARLS UNIVERSITAET TUEBINGEN

 Organization address address: GESCHWISTER-SCHOLL-PLATZ
city: TUEBINGEN
postcode: 72074

contact info
Titolo: Prof.
Nome: Ana Jesús
Cognome: García Sáez
Email: send email
Telefono: +49 70712973318
Fax: +49 70712935296

DE (TUEBINGEN) hostInstitution 1˙369˙302.04

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

apoptosis    interactions    quantitative    network    proteins    death    reconstituted    mathematical    cells    fcs    cancer    membranes    cell    bcl    identifies    signaling    model   

 Obiettivo del progetto (Objective)

'The proteins of the Bcl-2 family function as key regulators of apoptosis by controlling the permeabilization of the mitochondrial outer membrane. They form an intricate, fine-tuned interaction network which is altered in cancer cells to avoid cell death. Currently, we do not understand how signaling within this network, which combines events in cytosol and membranes, is orchestrated to decide the cell fate. The main goal of this proposal is to unravel how apoptosis signaling is integrated by the Bcl-2 network by determining the quantitative Bcl-2 interactome and building with it a mathematical model that identifies which interactions determine the overall outcome. To this aim, we have established a reconstituted system for the quantification of the interactions between Bcl-2 proteins not only in solution but also in membranes at the single molecule level by fluorescence correlation spectroscopy (FCS). (1) This project aims to quantify the relative affinities between an reconstituted Bcl-2 network by FCS. (2) This will be combined with quantitative studies in living cells, which include the signaling pathway in its entirety. To this aim, we will develop new FCS methods for mitochondria. (3) The structural and dynamic aspects of the Bcl-2 network will be studied by super resolution and live cell microscopy. (4) The acquired knowledge will be used to build a mathematical model that uncovers how the multiple interactions within the Bcl-2 network are integrated and identifies critical steps in apoptosis regulation. These studies are expected to broaden the general knowledge about the design principles of cellular signaling as well as how cancer cells alter the Bcl-2 network to escape cell death. This systems analysis will allow us to predict which perturbations in the Bcl-2 network of cancer cells can switch signaling towards cell death. Ultimately it could be translated into clinical applications for anticancer therapy.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

EXPAT (2013)

Exploring the human brain using magnetic resonance imaging and parallel transmission at ultra-high field

Read More  

19TH-CENTURY_EUCLID (2009)

Nineteenth-Century Euclid: Geometry and the Literary Imagination from Wordsworth to Wells

Read More  

MITOCHON (2013)

Artificial Mitochondria for Health

Read More