TRADEOFF METAL

Trade-offs in immunity in the metal hyperaccumulator Noccaea caerulescens

 Coordinatore THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

 Organization address address: University Offices, Wellington Square
city: OXFORD
postcode: OX1 2JD

contact info
Titolo: Ms.
Nome: Gill
Cognome: Wells
Email: send email
Telefono: +44 1865 289800
Fax: +44 1865 289801

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 221˙606 €
 EC contributo 221˙606 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2012-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-10-01   -   2015-09-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD

 Organization address address: University Offices, Wellington Square
city: OXFORD
postcode: OX1 2JD

contact info
Titolo: Ms.
Nome: Gill
Cognome: Wells
Email: send email
Telefono: +44 1865 289800
Fax: +44 1865 289801

UK (OXFORD) coordinator 221˙606.40

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

responses    traits    metal    genes    evolution    hyperaccumulating    evolutionary    metals    plant    caerulescens    plants    hyperaccumulation    evolved       ecological    suggests    molecular    trait    accumulated    concentrations   

 Obiettivo del progetto (Objective)

'Metal hyperaccumulating plants are able to accumulate exceptionally high concentrations of metals, such as Zinc, Nickel, and Cadmium, in their shoots to levels that would be toxic to most other plant species. The trait of metal hyperaccumulation has evolved independently multiple times in the plant kingdom. Since this trait is of high importance to bioremediation and biofortification strategies, intensive research efforts aim to decipher the underlying molecular processes. However, although our understanding of the molecular mechanisms involved in metal uptake and tolerance has improved, not much is known about the processes that have led to the evolution of metal hyperaccumulation in plants. Recent studies have provided new insight into the ecological and evolutionary significance of this trait by showing that the metal hyperaccumulating plant Noccaea caerulescens can use high concentrations of accumulated metals to defend itself against attack by pathogenic microorganisms. Interestingly, infected N. caerulescens plants show none of the inducible defence responses that are used by most plants to provide protection against infection, which suggests that it relies on accumulated metal for disease resistance. The fact that these plants have evolved the ability to uptake and store metals in their shoot tissue, but have in turn lost defences common to most plants suggests a trade-off in expressing both traits. This project aims to study the evolutionary, ecological and functional processes involved in the gain of metal hyperaccumulation and loss of other defensive traits in N. caerulescens. Responsible genes will be identified using phenotyping and RNAseq technology and these candidate genes will be further analysed through evolutionary approaches. The project will provide new insights into the evolution and ecology of metal hyperaccumulation and contribute to the understanding of how plant responses to biotic and abiotic stress may be connected on the molecular level.'

Altri progetti dello stesso programma (FP7-PEOPLE)

Π-NET (2010)

Pulmonary Imaging Network

Read More  

GENESTORY (2013)

Assembling genome history from gene stories: Phylogeny aware genome scale inference of ancestral traits and ancient environments

Read More  

RAPIDODORADAPTATION (2013)

Rapid adaptation to varying odor concentration

Read More