Coordinatore | THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Organization address
address: University Offices, Wellington Square contact info |
Nazionalità Coordinatore | United Kingdom [UK] |
Totale costo | 221˙606 € |
EC contributo | 221˙606 € |
Programma | FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | FP7-PEOPLE-2012-IIF |
Funding Scheme | MC-IIF |
Anno di inizio | 2013 |
Periodo (anno-mese-giorno) | 2013-06-04 - 2015-06-03 |
# | ||||
---|---|---|---|---|
1 |
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Organization address
address: University Offices, Wellington Square contact info |
UK (OXFORD) | coordinator | 221˙606.40 |
2 |
UNIVERSITY OF SOUTHAMPTON
Organization address
address: Highfield contact info |
UK (SOUTHAMPTON) | participant | 0.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'Recent technological advances place radio astronomy on the brink of a revolution, with survey capabilities about to improve dramatically. The newly completed northern hemisphere Low-Frequency ARray (LOFAR), and the future Karoo Array Telescope (MeerKAT) in the south, are two of the three new-generation radio telescopes driving this progress. It will now be possible, for the first time, to perform radio surveys sufficiently sensitive and wide to efficiently detect rapid, rare transients. Extreme astrophysical events, such as neutron star mergers and relativistic jet ejection from accreting black holes, are expected to show up amongst these radio transients. Such sources allow a glimpse of the laws of physics operating in conditions too extreme to be reproduced in a laboratory. The processes involved are of fundamental relevance in star and planet formation, galaxy evolution, and gamma-ray bursts. Furthermore, some classes of transients are expected to be the electromagnetic counterparts of bright gravitational wave sources. I propose to exploit the unprecedented new radio survey capacity to study high-energy processes in astrophysics. In particular, I will share an International Incoming Fellowship between the University of Southampton (UK) and the University of Cape Town (South Africa) -- two institutes uniquely well-positioned in the exciting new field of radio transients. There, I will utilize my extensive experience of optical/infrared observational astronomy, as well as numerical modelling, to characterize a variety of radio transients, in order to secure their astrophysical interpretation. This will allow us to study normally quiescent super-massive black holes, probe relativistic accretion and jet formation, measure kinetic feedback into the ambient medium, test theoretical models of the evolution of black hole and neutron star binaries, and perhaps to identify coherent radio bursts at cosmological distances.'
"Design of Mechanical Transmissions: Efficiency, Noise and Durability Optimization."
Read MoreThe molecular mechanism behind the axonal initial segment diffusion barrier
Read More"Shifts in ecosystems state in Mediterranean landscapes: when, where and how? The interacting effects of multiple disturbances under climate change"
Read More