SPIN COMPACT OBJECTS

Fundamental Physics with the Spin of Compact Objects

 Coordinatore UNIVERSITY OF SOUTHAMPTON 

 Organization address address: Highfield
city: SOUTHAMPTON
postcode: SO17 1BJ

contact info
Titolo: Ms.
Nome: Yan
Cognome: Qiao
Email: send email
Telefono: 442381000000
Fax: 442381000000

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 294˙693 €
 EC contributo 294˙693 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2012-IOF
 Funding Scheme MC-IOF
 Anno di inizio 0
 Periodo (anno-mese-giorno) 0000-00-00   -   0000-00-00

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITY OF SOUTHAMPTON

 Organization address address: Highfield
city: SOUTHAMPTON
postcode: SO17 1BJ

contact info
Titolo: Ms.
Nome: Yan
Cognome: Qiao
Email: send email
Telefono: 442381000000
Fax: 442381000000

UK (SOUTHAMPTON) coordinator 294˙693.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

wave    gravitational    ultra    efficiency    objects    ray    star    dense    stars    existence    spin    millisecond    fundamental    physics    neutron    emission    sub    mechanisms    compact       binaries   

 Obiettivo del progetto (Objective)

'Modern physics presents a number of challenges about the behaviour of the four fundamental forces of Nature which are beyond current technological capabilities of Earth-based labs. The existence of gravitational waves, their emission processes and the determination of the true ground state of ultra-dense matter are fascinating problems that can only be addressed with exceptional astrophysical laboratories like compact objects. In particular neutron stars and black holes, provide a unique opportunity to advance our understanding of these fundamental physics problems. The spin of neutron stars is perhaps the best observable that carries a large amount of information on the behaviour of matter in curved space-times and at ultra-high densities. Indeed the efficiency of gravitational wave emission mechanisms and the binding energy of sub-nuclear particles do depend on the spin period of neutron stars. In this project I address the problem of the existence of neutron stars in X-ray binaries with spin periods of less than 1 millisecond and propose to perform the deepest pulse search ever done on neutron star low mass X-ray binaries. These sub-millisecond objects, if found, are spinning sufficiently fast that strong model-independent constraints can be placed on the equation of state of ultra-dense matter and on the efficiency of gravitational wave emission mechanisms. I discuss then a possible new way to determine the spin of compact objects through a yet poorly explored quantum property of light. Finally, I propose to constrain gravitational wave emission mechanisms based on an enlarged sample size of neutron star spin frequencies which might help to pinpoint the best neutron star candidates for future direct gravitational wave searches.'

Altri progetti dello stesso programma (FP7-PEOPLE)

BIOPOLLAR (2015)

Impact of global change on the remobilization and Bioaccumulation of organic Pollutants in PolAr aquatic food webs

Read More  

ALLNIGHTS (2013)

RESEARCHERS' NIGHT: PEOPLE FOR A BETTER FUTURE

Read More  

H2S IN DIABETES (2015)

Preclinical efficacy testing of hydrogen sulfide donors against diabetic complications

Read More