SPIN COMPACT OBJECTS

Fundamental Physics with the Spin of Compact Objects

 Coordinatore UNIVERSITY OF SOUTHAMPTON 

 Organization address address: Highfield
city: SOUTHAMPTON
postcode: SO17 1BJ

contact info
Titolo: Ms.
Nome: Yan
Cognome: Qiao
Email: send email
Telefono: 442381000000
Fax: 442381000000

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 294˙693 €
 EC contributo 294˙693 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2012-IOF
 Funding Scheme MC-IOF
 Anno di inizio 0
 Periodo (anno-mese-giorno) 0000-00-00   -   0000-00-00

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITY OF SOUTHAMPTON

 Organization address address: Highfield
city: SOUTHAMPTON
postcode: SO17 1BJ

contact info
Titolo: Ms.
Nome: Yan
Cognome: Qiao
Email: send email
Telefono: 442381000000
Fax: 442381000000

UK (SOUTHAMPTON) coordinator 294˙693.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

dense    emission    fundamental    binaries    stars    star    wave    ultra    existence    objects    compact    mechanisms    sub    ray       spin    millisecond    physics    gravitational    neutron    efficiency   

 Obiettivo del progetto (Objective)

'Modern physics presents a number of challenges about the behaviour of the four fundamental forces of Nature which are beyond current technological capabilities of Earth-based labs. The existence of gravitational waves, their emission processes and the determination of the true ground state of ultra-dense matter are fascinating problems that can only be addressed with exceptional astrophysical laboratories like compact objects. In particular neutron stars and black holes, provide a unique opportunity to advance our understanding of these fundamental physics problems. The spin of neutron stars is perhaps the best observable that carries a large amount of information on the behaviour of matter in curved space-times and at ultra-high densities. Indeed the efficiency of gravitational wave emission mechanisms and the binding energy of sub-nuclear particles do depend on the spin period of neutron stars. In this project I address the problem of the existence of neutron stars in X-ray binaries with spin periods of less than 1 millisecond and propose to perform the deepest pulse search ever done on neutron star low mass X-ray binaries. These sub-millisecond objects, if found, are spinning sufficiently fast that strong model-independent constraints can be placed on the equation of state of ultra-dense matter and on the efficiency of gravitational wave emission mechanisms. I discuss then a possible new way to determine the spin of compact objects through a yet poorly explored quantum property of light. Finally, I propose to constrain gravitational wave emission mechanisms based on an enlarged sample size of neutron star spin frequencies which might help to pinpoint the best neutron star candidates for future direct gravitational wave searches.'

Altri progetti dello stesso programma (FP7-PEOPLE)

NOLACOME (2012)

Nonlinear Optics and Lasing in Complex Media

Read More  

THREEPLE (2014)

Three-Photon Entanglement

Read More  

IN VITRO PKPD SYSTEM (2008)

In vitro pharmacokinetic/pharmacodynamic system for antifungal combination therapy against filamentous fungi

Read More