COSUN

Cooperative Phenomena in Supramolecular Nanostructures

 Coordinatore THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 2˙452˙688 €
 EC contributo 2˙452˙688 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2012-ADG_20120216
 Funding Scheme ERC-AG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-05-01   -   2018-04-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD

 Organization address address: University Offices, Wellington Square
city: OXFORD
postcode: OX1 2JD

contact info
Titolo: Ms.
Nome: Gill
Cognome: Wells
Email: send email
Telefono: +44 1865 289800
Fax: +44 1865 289801

UK (OXFORD) hostInstitution 2˙452˙688.00
2    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD

 Organization address address: University Offices, Wellington Square
city: OXFORD
postcode: OX1 2JD

contact info
Titolo: Prof.
Nome: Harry Laurence
Cognome: Anderson
Email: send email
Telefono: 441865000000
Fax: +441865 285002

UK (OXFORD) hostInstitution 2˙452˙688.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

molecular    electronic    phenomena    multivalent    recognition    transitions    individual    magnitude    coupling    cooperativity    excitonic    components    fluorescent    nanostructures    cooperative   

 Obiettivo del progetto (Objective)

'Many of the remarkable properties of molecular nanostructures are cooperative effects. A system is described as cooperative when it behaves differently from expectations based on the properties of its individual components. Multivalent cooperativity is crucial for biological molecular recognition, yet the factors determining the magnitude of this effect are poorly understood. Excitonic cooperativity is exploited in sensitive detectors for explosives, and is the basis of photosynthetic light harvesting. Electronic cooperativity is illustrated on the molecular scale by the phenomenon of aromaticity, and on a larger scale by metallic conductivity. Magnetic properties provide many examples of cooperativity. The magnitude of cooperative effects increases with the strength of coupling between the individual components, and with the number of coupled components. Cooperative systems exhibit sharp changes in behavior in response to small changes in conditions, such as transitions from free to bound, fluorescent to non-fluorescent, or conductive to insulating. The tendency towards an “all-or-nothing” response is often useful; in the limit of a very large ensemble, it leads to phase transitions. The CoSuN project will extend methodology developed in Oxford to create large monodisperse supramolecular nanostructures which are uniquely suited for exploring multivalent, excitonic and electronic cooperativity. The template-directed synthesis of these nanostructures is made possible by strong multivalent cooperativity, while the electronic coupling between the individual subunits results in other cooperative phenomena. This project will clarify understanding of cooperative molecular recognition. It will also help to solve some of the mysteries of photosynthesis and reveal the first molecular manifestations of coherent quantum mechanical phenomena, such as Aharonov-Bohm effects.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

PROTISTWORLD (2013)

Protist evolution in suboxic worlds

Read More  

RIBOMYLOME (2013)

The Role of Non-coding RNA in Protein Networks and Neurodegenerative Diseases

Read More  

4D-GENOME (2014)

Dynamics of human genome architecture in stable and transient gene expression changes

Read More