PRECISIONGAMMA

Probing cosmic accelerators through atmospheric calibration and precision very-high-energy gamma-ray spectroscopy

 Coordinatore CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE 

 Organization address address: Rue Michel -Ange 3
city: PARIS
postcode: 75794

contact info
Titolo: Dr.
Nome: Jocelyn
Cognome: Mere
Email: send email
Telefono: +33 4 67613535
Fax: +33 4 67043236

 Nazionalità Coordinatore France [FR]
 Totale costo 194˙046 €
 EC contributo 194˙046 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2012-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-02-15   -   2016-02-14

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

 Organization address address: Rue Michel -Ange 3
city: PARIS
postcode: 75794

contact info
Titolo: Dr.
Nome: Jocelyn
Cognome: Mere
Email: send email
Telefono: +33 4 67613535
Fax: +33 4 67043236

FR (PARIS) coordinator 194˙046.60

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

spectral    atmospheric    telescope    first    accelerators    us    ray    center    rays    gamma    gev    energies    energy    time    pulsar    galactic    data    array    cherenkov       monitoring    vhe    lt    pulsars   

 Obiettivo del progetto (Objective)

'Very-high-energy (VHE; 50 GeV < E < 100 TeV) gamma-ray telescopes observe cosmic particle accelerators, probing fundamental acceleration processes at energies far beyond those achievable at terrestrial accelerators and in extreme environments such as supernova remnants, pulsars, pulsar winds, and the Galactic Center. The upgraded H.E.S.S.-II telescope array saw first light in July 2012 and represents the cutting edge of the imaging atmospheric Cherenkov technique that enables observations of VHE gamma rays from ground-based facilities. This project will take advantage of the new data from H.E.S.S.-II, now the largest such telescope, with an unprecedented sensitivity to gamma-rays, in particular at low energies (50 < E < 150 GeV) which were previously beyond reach. Access to this key energy range will allow us to search for pulsed VHE emission from energetic pulsars, such as that unexpectedly observed from the Crab pulsar in 2011. It will also permit us to investigate the very recent yet mounting evidence for gamma-ray spectral lines from the Galactic Center and unassociated sources seen by the Fermi Gamma-ray Space Telescope. Utilizing an inter-disciplinary approach, we will integrate a monitoring LIDAR system with H.E.S.S.-II to directly calibrate the telescope data using grid-produced Monte Carlo simulations based on real-time, measured atmospheric properties. The implementation of an atmospheric monitoring and calibration program for H.E.S.S.-II and the next-generation Cherenkov Telescope Array is expected to improve energy resolution, reduce spectral bias, and minimize systematic uncertainties. The improvements provided by this project aim not only to address our specific research questions but also to provide, for the first time, the precision VHE gamma-ray spectroscopy required to further elucidate the underlying mechanisms responsible for gamma-ray production in the cosmos.'

Altri progetti dello stesso programma (FP7-PEOPLE)

EPSEI (2011)

Evaluating Policies for Sustainable Energy Investments: towards an integrated approach on national and international stage

Read More  

WEBMAP (2015)

Mapping the Dark Web of the Cosmos

Read More  

POLYCOLOR NUTRITION (2009)

Nutritional ecology and seasonal colour polymorphism in a butterfly

Read More