NER

Structural studies of Nucleotide Excision Repair for drug development targeting protein-DNA interactions

 Coordinatore Masarykova univerzita 

 Organization address address: Zerotinovo namesti 9
city: BRNO STRED
postcode: 60177

contact info
Titolo: Dr.
Nome: Veronika
Cognome: Papouskova
Email: send email
Telefono: 420549000000

 Nazionalità Coordinatore Czech Republic [CZ]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-09-01   -   2017-08-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    Masarykova univerzita

 Organization address address: Zerotinovo namesti 9
city: BRNO STRED
postcode: 60177

contact info
Titolo: Dr.
Nome: Veronika
Cognome: Papouskova
Email: send email
Telefono: 420549000000

CZ (BRNO STRED) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

dna    ner    resistance    pathways    xpa    ercc    sites    structure    chemotherapeutics    rpa    xpf    proteins    cancer    binding    repair   

 Obiettivo del progetto (Objective)

'Numerous DNA repair pathways are required for genomic stability and chromosome maintenance. XPF/ERCC1 protein complex is an evolutionally conserved structure-specific endonuclease involved in nucleotide excision repair (NER) and other DNA repair pathways, making it essential for viability. The pleiotropic phenotypes of XPF/ERCC1 deficiency in humans range from cancer-predisposition to accelerated aging and severe developmental abnormalities. The research outlined here combines biochemical and structural approaches to study XPF/ERCC1 incision 5′ to the lesion during NER. The proposal is guided by the premise that XPA and RPA proteins, two other NER core factors, stimulate XPF/ERCC1 activity. The primary aim is to structurally characterize the multiprotein-DNA assembly in order to elucidate the DNA binding and catalytic activity of XPF/ERCC1. To achieve this we will address how individual DNA binding domains of XPF/ERCC1 contribute to DNA cleavage, how XPA recruits XPF/ERCC1 to sites of NER, and how RPA in conjunction with XPA pre- organize the DNA structure at ds/ss junctions. The public health importance of this research comes from the increasing interest in the regulation of XPF/ERCC1 activity, due to its involvement in DNA repair pathways implicated in the resistance of tumors to chemotherapy. Cancer associated deaths are the number one cause of mortality worldwide and resistance to current chemotherapeutics remains a major clinical hurdle. Sensitizing cancer cells to treatment with DNA damaging chemotherapeutics holds great value. One way to achieve this result is the development of small drug-like molecules targeting DNA binding sites of NER proteins to disrupt the formation of a functional NER complex and decrease its capacity.'

Altri progetti dello stesso programma (FP7-PEOPLE)

HMF (2009)

Hilbert Modular Forms and Diophantine Applications

Read More  

MOLDYKITA (2013)

Solvent dynamics in enzymatic catalysis: a molecular dynamics simulations and kinetic terahertz absorption spectroscopy study

Read More  

TS (2013)

"Topological Solitons, from Field Theory to Cosmos"

Read More