Coordinatore | THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Organization address
address: The Old Schools, Trinity Lane contact info |
Nazionalità Coordinatore | United Kingdom [UK] |
Totale costo | 169˙390 € |
EC contributo | 169˙390 € |
Programma | FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | FP7-PEOPLE-2007-2-1-IEF |
Funding Scheme | MC-IEF |
Anno di inizio | 2008 |
Periodo (anno-mese-giorno) | 2008-10-01 - 2010-09-30 |
# | ||||
---|---|---|---|---|
1 |
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Organization address
address: The Old Schools, Trinity Lane contact info |
UK (CAMBRIDGE) | coordinator | 0.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'The target of the present project is to fabricate high efficiency nanostructured hybrid solar cells in which the exciton recombination is strongly avoided by interface nanoengineering. The cells will be made in three main steps. First, large-area, ordered Anodised Aluminium Oxide (AAO) templates will be fabricated electrochemically onto transparent conducting substrates. Order will be induced prior to the anodization of aluminium by pre-patternig using Focussed Ion Beam (FIB). In a second step, the ordered templates fabricated will be used for the synthesis of large-area arrays of aligned semiconducting oxide nanowires. The arrays will be synthesized by electrodeposition within the template pores and by later removal of the same. Finally, films of conducting organic materials will be deposited onto the nanowire arrays by classical methods such as spin-coating from solution or thermal evaporation. The structures and devices obtained after each of the steps will be thoroughly characterised and the final test device performance will be evaluated. There are many materials science issues which will be addressed for improving the efficiency of hybrid solar cells. In particular, reduction of recombination of photo-induced charges through control of arrangement and size of oxide nanostructured electrodes, understanding of charge transfer at inorganic/organic interface, and permeation of organic semiconductor into the oxide nanostructures.'