MOBILE2DG

Mobile Two Dimensional Gas

 Coordinatore ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Switzerland [CH]
 Totale costo 165˙040 €
 EC contributo 149˙869 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2013-PoC
 Funding Scheme CSA-SA(POC)
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-11-01   -   2014-10-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

 Organization address address: BATIMENT CE 3316 STATION 1
city: LAUSANNE
postcode: 1015

contact info
Titolo: Dr.
Nome: Caroline
Cognome: Vandevyver
Email: send email
Telefono: +41 21 693 35 73
Fax: +41 21 693 55 83

CH (LAUSANNE) hostInstitution 149˙869.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

material    crystal    physical    electrically    insulator    effect    inside    interface    materials    poc    power    phenomenon    dg    bulk    conductivity    device    industrially    plan    interfaces    single    confined   

 Obiettivo del progetto (Objective)

'In certain physical interfaces between two different materials, or in physical surfaces, electrons or holes behave as if they were confined to two dimensions, forming a 2-dimensional gas, [2DG] and showing exceptional properties, such as very high mobility. 2DG is a common phenomenon widely used, e.g. in Metal-oxide-semiconductor field effect transistors (MOSFETs), currently used in nearly all microprocessors. 2DG is usually confined to physical interfaces between two different materials and its physical location is fixed. Imagine now a new type of 2DG, which is not confined to a physical interface but can be created electrically inside a pure single material; it could be electrically ‘written’ into a working device at will, and could be displaced inside the material by a small voltage pulse. In our ERC project we predicted this theoretically and demonstrated it experimentally inside a single crystal of the ubiquitous insulator BaTiO3. In contrast to conventional 2DG, our 2DG isn't bound to an interface. The free carrier concentration at our 2DG reaches giant 10power19 cm-3 and its metallic conductivity exceeds 10power9 times the bulk conductivity. We have also elaborated and filed a patent application on a way to produce this 2DG inside the insulator. In principle this effect can work in all ferroelectric materials. In the PoC project we plan to demonstrate the phenomenon inside thin films, which are more industrially viable than the bulk crystal used for our first demonstration, to demonstrate the function of our field-controlled 2DG in an industrially exploitable structure, approach industry, and explore together applicability of devices based on this new phenomenon in electronics and related areas, such as MEMS. At the end of the PoC project, we will have confirmed the potential of the new 2DG in a set of devices, secured our new patents, developed IPR strategy and we or partners will have strategic plan towards device development and commercialization.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

COSMOLAB (2010)

Laboratory simulation of cosmological magnetic fields

Read More  

CARV (2011)

Chemical Approaches to Restoring Vision

Read More  

AZIDRUGS (2013)

Molecular tattooing: azidated compounds pave the path towards light-activated covalent inhibitors for drug development

Read More