D_IN_VIVO

A general law describing the diffusion of membrane proteins in vivo based on single molecule tracking of membrane proteins in Escherichia coli

 Coordinatore KATHOLIEKE UNIVERSITEIT LEUVEN 

 Organization address address: Oude Markt 13
city: LEUVEN
postcode: 3000

contact info
Titolo: Dr.
Nome: Stijn
Cognome: Delauré
Email: send email
Telefono: +32 16 320 944
Fax: +32 16 324 198

 Nazionalità Coordinatore Belgium [BE]
 Totale costo 169˙800 €
 EC contributo 169˙800 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2012-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-09-01   -   2016-08-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    KATHOLIEKE UNIVERSITEIT LEUVEN

 Organization address address: Oude Markt 13
city: LEUVEN
postcode: 3000

contact info
Titolo: Dr.
Nome: Stijn
Cognome: Delauré
Email: send email
Telefono: +32 16 320 944
Fax: +32 16 324 198

BE (LEUVEN) coordinator 169˙800.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

vivo    membrane    model    translate    proteins    molecule    quantitative    tracking    membranes    me    radius    biology    single    diffusion    environment    cells    microscope    cell   

 Obiettivo del progetto (Objective)

'The ultimate goal of cell biology is to understand how proteins function in real cells and to understand their regulatory mechanisms. To achieve this goal one needs to analyze molecules in their cellular environment and not under idealized test tube conditions. A major difference between in vivo and in vitro conditions is the crowdedness (and associated molecular complexity) of the cytoplasm and biological membranes. As a consequence diffusion in this environment is significantly slower. To make biology more quantitative, we should measure the key parameters such as reaction rates and diffusion coefficients in vivo. Here, I propose an experimental set-up to measure the diffusion of membrane proteins in live bacterial cells. The main objective of this project is to establish a relationship between the diffusion coefficient and number of trans-membrane helices (radius in the membrane) of membrane proteins. The mobility of fluorescently labeled proteins will be probed at the single molecule level in the membranes of a model prokaryotic organism – Escherichia coli. Single molecule tracking of membrane proteins systematically increasing in size (radius in the membrane) will be implemented to obtain a general model of protein diffusion in the membranes. Assigning actual numbers to the parameters of a cell will provide a quantitative context for systems biology efforts and sharpen our understanding of how a cell works. By training-through-research, the fellowship will allow me to learn new techniques (single molecule tracking, programming) and how to build/align microscope set-ups. This will help me transform from a microscope user to a microscope constructor and vastly increase my potential as a cell biologist. In the international and interdisciplinary environment of the host group I will improve my ability to train and manage people, learn to translate my science, across disciplines, to a new audience and to translate fundamental research into industrial applications.'

Altri progetti dello stesso programma (FP7-PEOPLE)

SOMOPRO (2009)

South Moravian Programme for Distinguished Researchers

Read More  

MEMIC (2013)

Fracture mechanics of microstructured composites incorporating intrinsic length-scales

Read More  

FROM BENCH TO BEDSIDE (2011)

Role of microRNAs 143 and 145 in cardiovascular physiology and disease: from bench to bedside

Read More