Coordinatore | III V LAB
Organization address
address: Campus Polytechnique, 1 avenue Augustin Fresnel contact info |
Nazionalità Coordinatore | France [FR] |
Totale costo | 5˙025˙452 € |
EC contributo | 3˙330˙000 € |
Programma | FP7-ICT
Specific Programme "Cooperation": Information and communication technologies |
Code Call | FP7-ICT-2013-11 |
Funding Scheme | CP |
Anno di inizio | 2013 |
Periodo (anno-mese-giorno) | 2013-10-01 - 2016-09-30 |
# | ||||
---|---|---|---|---|
1 |
III V LAB
Organization address
address: Campus Polytechnique, 1 avenue Augustin Fresnel contact info |
FR (Palaiseau) | coordinator | 0.00 |
2 |
COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
Organization address
address: RUE LEBLANC contact info |
FR (PARIS 15) | participant | 0.00 |
3 |
DANMARKS TEKNISKE UNIVERSITET
Organization address
address: Anker Engelundsvej contact info |
DK (KONGENS LYNGBY) | participant | 0.00 |
4 |
INNOLUME GMBH
Organization address
address: KONRAD-ADENAUER-ALLEE 11 contact info |
DE (DORTMUND) | participant | 0.00 |
5 |
UNIVERSITAET KASSEL
Organization address
address: MOENCHEBERGSTRASSE contact info |
DE (KASSEL) | participant | 0.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
Silicon photonics is a powerful way to combine the assets of integrated photonics and CMOS technologies. The SEQUOIA project intends to make significant new advances in silicon photonic integrated circuits by heterogeneously integrating novel III-V materials, namely quantum dot and quantum dash-based materials on silicon wafers, through wafer bonding. Thanks to the superior properties of those innovative materials, hybrid III-V lasers with better thermal stability, higher modulation bandwidth and the possibility of generating a flat wavelength-division-multiplexing comb will be demonstrated. Moreover, the hybrid integration of nano-structured materials on Si allows to exploit the advantages provided by silicon. In particular, optical filters can be directly integrated with hybrid quantum dot/quantum dash/Si lasers to create chirp-managed lasers, which have an enhanced modulation bandwidth and extinction ratio compared to directly modulated lasers. As an illustration of the technology developed in SEQUOIA, transmitters with a total capacity of 400 Gbit/s (16x25 Gbit/s) will be designed, fabricated and characterized. The hybrid integration of nano-structured III-V materials in silicon through a wafer bonding technique is generic, and the concepts and technology developed inside the SEQUOIA project can be further extended to other types of transmitters, for example with extended link range, higher bit rate, higher WDM channel number and other types of modulation formats. In addition, a broad range of applications, such as sensing, health-care, safety and security, can benefit from the technology developed in SEQUOIA.The SEQUOIA consortium is highly complementary, covering all skills required to achieve the project objectives, from the growth of the nano-structured materials to the assessment of high bit rate digital communication systems, and has the potential to set up a comprehensive supply chain for the future exploitation.