Coordinatore | TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Organization address
address: TECHNION CITY - SENATE BUILDING contact info |
Nazionalità Coordinatore | Israel [IL] |
Totale costo | 100˙000 € |
EC contributo | 100˙000 € |
Programma | FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | FP7-PEOPLE-2013-CIG |
Funding Scheme | MC-CIG |
Anno di inizio | 2013 |
Periodo (anno-mese-giorno) | 2013-09-01 - 2017-08-31 |
# | ||||
---|---|---|---|---|
1 |
TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Organization address
address: TECHNION CITY - SENATE BUILDING contact info |
IL (HAIFA) | coordinator | 100˙000.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'The functionalized Cahn-Hilliard energy is a phase-field characterization of an interfacial energy used to describe dynamics of amphiphilic network formation. We have successfully applied the functionalized Cahn-Hilliard energy to model the morphology of water nano-pore networks in ionomer membranes. The resulting morphology model was validated with experimental scattering data of Nafion, an ionomer membrane which is a critical component in fuel cells.
It is natural to use, as a basis, the successful morphology model to study the effect of morphology on membrane performance, e.g., conductivity. The functionalized Cahn-Hilliard energy offers, however, only a phenomenological treatment of the electrostatic forces between the polymer and the water. Such a treatment effectively blocks important extensions of the model.
The main goal of this proposal is the development, analysis, and simulation of continuum models which characterize amphiphilic network formation coupled to ion transport. Attaining this goal requires redeveloping key components of the functionalized Cahn-Hilliard model while operating on a wide range of scales, e.g., from the non-uniform water structure in a pore at the nanoscale to membrane conductivity at the macroscale. A key application of this proposal is to study conductivity and selectivity of ionomer membranes and their dependence upon morphology and ionic concentrations.
The project is of clear interdisciplinary nature, merging problems, ideas and tools from Mathematics, material science, solution chemistry and soft matter physics. The design and performance of novel clean energy devices such as fuel cells, flow batteries, or organic solar cells critically depends on the optimized coupling between material nanostructure, electrostatics, charge transport and nanoflows. Any progress in the directions proposed above will open the way to robust phase-field models which can incorporate and couple these four effects.'