PLASM-ON-FIBRE

Advanced plasmonic-on-fibre devices for optical communication and sensing applications

 Coordinatore ASTON UNIVERSITY 

 Organization address address: ASTON TRIANGLE
city: BIRMINGHAM
postcode: B4 7ET

contact info
Titolo: Prof.
Nome: Lin
Cognome: Zhang
Email: send email
Telefono: +44 121 204 3548

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 231˙283 €
 EC contributo 231˙283 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-IIF
 Funding Scheme MC-IIF
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-11-15   -   2016-11-14

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    ASTON UNIVERSITY

 Organization address address: ASTON TRIANGLE
city: BIRMINGHAM
postcode: B4 7ET

contact info
Titolo: Prof.
Nome: Lin
Cognome: Zhang
Email: send email
Telefono: +44 121 204 3548

UK (BIRMINGHAM) coordinator 231˙283.20

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

polaritons    transfer    plasmonic    plasmon    technologies    optical    nanostructures    excitation    issp    aipt    gratings    communication    surface    fibre    plasmonics    sensing    functions    aston    iif    hybrid   

 Obiettivo del progetto (Objective)

'The proposed knowledge transfer project on Advanced plasmonic-on-fibre devices for optical communication and sensing applications (Plasm-on-fibre) via this International Incoming Fellowship (IIF) programme will transfer the knowledge and expertise of the Marie Curie IIF Fellow Dr J Zhang from the Institute of Solid State Physics (ISSP) of Chinese Academy of Sciences, who is specialised in plasmonics and nanophotonics, to the EU host – Aston Institute of Photonic Technologies (AIPT) at Aston University in the UK to carry out the world-class research in the new emerging science area – Plasmonics. Working in the defined four key research objective areas: R1: In-depth theoretical study and advanced fabrication of novel fibre gratings for efficient excitation of surface plasmon polaritons; R2: Exploring nanomaterials and nanostructures for novel plasmonic functions; R3: Developing ultrafast magneto-plasmonic modulation function and devices based on novel hybrid multi-layer excitation of surface plasmon polaritons; R4: Developing next generation plasmonic-on-fibre biosensors based on hybrid fibre gratings and plasmonic nanostructures, we anticipate this project will generate new knowledge, explore potential functions and develop novel plasmonic-on-fibre devices for optical communication and sensing applications and lead to long term collaboration between AIPT and ISSP. In parallel, this IIF project will also aim to train Post-docs and Ph.D and Master students at AIPT and form a network with 4 academic and 3 industrial partners in Europe. The outcome of this project will enhance the EU leading position in fundamental knowledge, new ideas and novel devices and technologies in modern plasmonics.'

Altri progetti dello stesso programma (FP7-PEOPLE)

APEX (2014)

Advanced Processor Core for Space Exploration

Read More  

CSAM (2008)

Coronal Seismology and Magnetoseismology

Read More  

RADIOPHARM METAL ISO (2013)

New chemical platforms for targeted radiopharmaceuticals based on generator-produced metal isotopes

Read More