Coordinatore | CENTRE TECNOLOGIC DE TELECOMUNICACIONS DE CATALUNYA
Organization address
address: "PARC MEDITERRANI DE TECNOLOGIA, AVINGUDA CARL FRIEDRICH GAUSS 7" contact info |
Nazionalità Coordinatore | Spain [ES] |
Totale costo | 115˙018 € |
EC contributo | 115˙018 € |
Programma | FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | FP7-PEOPLE-2013-IIF |
Funding Scheme | MC-IIF |
Anno di inizio | 2014 |
Periodo (anno-mese-giorno) | 2014-03-01 - 2015-02-28 |
# | ||||
---|---|---|---|---|
1 |
CENTRE TECNOLOGIC DE TELECOMUNICACIONS DE CATALUNYA
Organization address
address: "PARC MEDITERRANI DE TECNOLOGIA, AVINGUDA CARL FRIEDRICH GAUSS 7" contact info |
ES (CASTELLDEFELS) | coordinator | 115˙018.30 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'Converged fiber-wireless (FiWi) access networks may be viewed as the endgame of broadband access. Most of the past layer-2 and layer-3 FiWi research activities have been focusing on cascaded Ethernet passive optical network (EPON) and WLAN-mesh networks, or to a lesser extent also WiMAX. In this proposed research project, we explore new interdisciplinary possibilities and investigate novel ways of exploiting low-cost Ethernet based FiWi access networks to address key open research challenges of emerging 3GPP LTE-Advanced heterogeneous networks (HetNets). The objectives of the research project are threefold. First, we design and investigate high-capacity low-latency next-generation PON based mobile backhaul infrastructures with direct communications between collocated optical network units and base stations or WiFi access points as well as multi-failure recovery capabilities. Second, we develop and evaluate the performance of advanced traffic steering techniques based on cell association, biasing, re-selection, and dual-mode user equipment assisted base station/access point switching and combine them with real-time self-healing techniques to develop self-healing solutions for FiWi enhanced HetNets with multipath WiFi offloading capability of mobile data traffic. Third, we study the potential and involved technical challenges of enhancing FiWi access networks with wireless and passive fiber optic sensors to enable machine-to-machine (M2M) communications. We investigate the coexistence performance of event-driven M2M traffic and conventional human-to-human (H2H) traffic taking emerging low-power WiFi and Sub 1 GHz WLAN technologies into account and develop energy- and traffic-aware contention resolution and coordination techniques for event-driven M2M communications in FiWi-HetNet based smart grid communications infrastructures with reduced signaling overhead, decreased M2M access delay, and wide area situational awareness (WASA) for fast fault recovery in smart grids.'
Bioactive natural compounds extracted and isolated from olive tree using modern technologies: Probing into their therapeutic potential
Read MoreIntrogression of alien chromosomes from barley into wheat breeding lines to increase genetic variation: epigenetic control of centromere function stability and transmission
Read More"Genetic High Throughput Screenings by random mutagenesis to identify Plasmodium falciparum critical genes for asexual growth, sexual differentiation and virulence affecting host immune responses"
Read More