TRUEVIEW

Time-Resolved Ultrafast Electron Visualization of Evanescent Waves

 Coordinatore ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE 

 Organization address address: BATIMENT CE 3316 STATION 1
city: LAUSANNE
postcode: 1015

contact info
Titolo: Prof.
Nome: Fabrizio
Cognome: Carbone
Email: send email
Telefono: +41 21 6930562
Fax: +41 21 6935875

 Nazionalità Coordinatore Switzerland [CH]
 Totale costo 199˙317 €
 EC contributo 199˙317 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-05-01   -   2016-04-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

 Organization address address: BATIMENT CE 3316 STATION 1
city: LAUSANNE
postcode: 1015

contact info
Titolo: Prof.
Nome: Fabrizio
Cognome: Carbone
Email: send email
Telefono: +41 21 6930562
Fax: +41 21 6935875

CH (LAUSANNE) coordinator 199˙317.60

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

evanescent    microscopy    nanoscale    waves    wavelength    optoelectronic    photonic    optical    confined    quantum    missing    light    time    sub    electron    nanostructures    scientific    trueview   

 Obiettivo del progetto (Objective)

'Due to the promising potential of evanescent optical waves and surface plasmon polaritons to successfully merge current photonic and electronic technology on the nanoscale, they are generally envisioned as the information carriers of the future. This, however, requires the advanced miniaturization of integrated optical circuitry, which demands great effort not only in fabrication and design, but even more so in the development of accurate control and, above all, a deepest scientific understanding of sub-wavelength-confined light. At present, the thorough understanding of the nanoscale behaviour of evanescent fields and the details of the underlying light-matter interactions are missing, but key elements in modern optoelectronics research.

TRUEViEW aims to provide the currently missing fundamental knowledge, by implementing innovative electron imaging techniques as the ultimate tools to directly visualize and characterize photonic and plasmonic nanostructures in both space and time with nanometer and femtosecond resolution. The project takes a bottom-up approach throughout, yielding a systematic and consistent route towards unravelling the working principles of nanoscale-confined optical waves and gaining practical expertise on the manipulation of light in optoelectronic nanostructures. At the same time, the project will pioneer and establish the field of ultrafast electron microscopy in the European research community, as well as newly introducing the novel technique of in-situ Photon-Induced Near-field Electron Microscopy.

On the whole, TRUEViEW will lay the groundwork for a myriad of future optoelectronic applications, which include - among many others - sub-wavelength optics, light generation and data storage, nanolithography, quantum computing, quantum cryptography, biophysical spectroscopy and nanosensing. As such, the project will have a strong impact not only all across the scientific board, but also in the European commercial and technological industry.'

Altri progetti dello stesso programma (FP7-PEOPLE)

ARCHITECTURAL MASQUE (2009)

"Performing Spaces: Architecture, Spatiality, and Politics in European Ceremonial Cultures, circa 1550-1700"

Read More  

ROLE OF ALVEOLAR MFS (2012)

Study of the functional role of Alveolar Macrophages in vivo

Read More  

MULTIPLE TIMESCALES (2014)

"Understanding the interaction between timescales of single neurons, networks and the environment"

Read More