AECE

Adaptive Optimal Estimation and Control for Automotive Engine Systems with Approximate Dynamic Programming

 Coordinatore UNIVERSITY OF BRISTOL 

 Organization address address: TYNDALL AVENUE SENATE HOUSE
city: BRISTOL
postcode: BS8 1TH

contact info
Titolo: Mrs.
Nome: Julie
Cognome: Coombs
Email: send email
Telefono: +44 117 3315535

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 231˙283 €
 EC contributo 231˙283 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2015
 Periodo (anno-mese-giorno) 2015-01-05   -   2017-01-04

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITY OF BRISTOL

 Organization address address: TYNDALL AVENUE SENATE HOUSE
city: BRISTOL
postcode: BS8 1TH

contact info
Titolo: Mrs.
Nome: Julie
Cognome: Coombs
Email: send email
Telefono: +44 117 3315535

UK (BRISTOL) coordinator 231˙283.20

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

adp    optimal    afr    estimation    engine    online    torque    academic    adaptive    event    intake    fuel    automotive    performance    models   

 Obiettivo del progetto (Objective)

'According to the latest global energy policy, more than 630 million vehicles are expected to be added to the Indian, Chinese, US, and EU fleets between 2000 and 2030. This growth increases requirements for fuel economy and necessitates the development of automotive engine management systems using advanced estimation and control approaches. This project is dedicated to study a novel online optimal adaptive estimation and control framework and to address their applications to engine estimation and control (e.g. torque estimation and air-fuel-ratio (AFR) control) in particular for turbocharged engines. A recently developed bio-inspired approach, approximate dynamic programming (ADP), will be exploited so that the estimation or control for an optimal performance index can be online solved without precise models. A laboratory engine test-rig will be used for experiments. Specific objectives to support the overall project are: 1) Revisit and improve engine models to account for the delays between the intake fuel injection event and torque output induction event; 2) Develop an adaptive parameter estimation approach to determine engine model parameters within finite time and with guaranteed transient performance; 3) Investigate an ADP-based adaptive observer for engine state estimation (e.g. torques, intake pressure); 4) Study ADP-based optimal adaptive control for complex nonlinear systems and exploit its application in terms of engine control to minimize the effect of cyclic dispersion and to allow for improved AFR performance. The project will be conducted in close collaboration with other academic institutions (University of Bath) and industry (Jaguar Land Rover). The research outcomes could lead to significant advances in both academic research and engineering applications. Thus, it is paving a way for further theoretical developments in optimal theory and also for bridging the gap between optimal adaptive control techniques and their application to automotive systems.'

Altri progetti dello stesso programma (FP7-PEOPLE)

SRLUNG (2012)

"Steroid Receptors in Non-Small Cell Lung Cancer: Diagnostic, prognostic and therapeutic Implications"

Read More  

ENANAMMIC-BIOF (2010)

Engineering Anaerobic Mixed Microbial Communities for Biofuels Production

Read More  

MICROCORNEA (2009)

"In-vivo microstructure of the cornea: implications for vision, health, and disease"

Read More