TRAVERSE

Towards Very Large Scale Human-Robot Synergy

 Coordinatore MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V. 

 Organization address address: Hofgartenstrasse 8
city: MUENCHEN
postcode: 80539

contact info
Titolo: Mrs.
Nome: Jane
Cognome: Kraushaar-Geisse
Email: send email
Telefono: +49 7071601524
Fax: +49 7071601520

 Nazionalità Coordinatore Germany [DE]
 Totale costo 161˙968 €
 EC contributo 161˙968 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-09-01   -   2016-08-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.

 Organization address address: Hofgartenstrasse 8
city: MUENCHEN
postcode: 80539

contact info
Titolo: Mrs.
Nome: Jane
Cognome: Kraushaar-Geisse
Email: send email
Telefono: +49 7071601524
Fax: +49 7071601520

DE (MUENCHEN) coordinator 161˙968.80

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

interaction    robots    teams    functionalities    humans    constraints    scalable    team    behavior    robot    safety    human    operators    virtual   

 Obiettivo del progetto (Objective)

'Hazardous work environment for humans, growing necessity for an increase in the worldwide agricultural production, and a rapid rise in the public healthcare expenditures due to aging population are among some of the most predominant societal issues where robotics and automation are becoming progressively vital. Distributed multi-robot teams consisting of a large number of robots operating in close cooperation with humans is fundamental for such applications. How to achieve maximum synergy between teams of robots and humans, without jeopardizing human safety and comfort, within the constraints of resources, e.g., computational capacity of the robots, sensor and actuator costs, is still an open question. The focus of this research project is on investigating and developing integrated methods for robot team functionalities with human interaction that are scalable to a very large number of robots, thus enabling their successful real-world deployment.

Using state of the art, ecologically valid and immersive virtual environments and virtual reality equipments, the project will study and model human behavior, perception and cognitive responses when they interact and/or cooperate with robots in a large-scale multi-robot scenario. Clear distinction will be made between human users and operators where the former is expected to benefit from directly using a robot that functions as a part of a large robotic team. On the other hand, human operators are those that are in charge of cooperating/controlling a team of robots to accomplish a collaborative task. Eventually, using the human behavior models, cooperative multi-robot functionalities, including localization, mapping and motion planning, will be optimally designed to be extremely scalable within the constraints of ease, safety, effectiveness and naturalness of human user/operator interaction with the robots.'

Altri progetti dello stesso programma (FP7-PEOPLE)

LAP (2008)

Literature and Peception. On the Aesthetic Phenomenology of Central European Modernism

Read More  

CONGO QUESTION (2009)

Internationalism and the Congo Question (1875-1914)

Read More  

AGAME (2010)

"Archaic and classical Greek Amphoras in north-western Mediterranean area and central Europe: diffusion, origin and contents"

Read More