FLUOLAPS

A two-photon electrochemical and fluorescence microscope for imaging of cell-surface interactions

 Coordinatore QUEEN MARY UNIVERSITY OF LONDON 

 Organization address address: 327 MILE END ROAD
city: LONDON
postcode: E1 4NS

contact info
Titolo: Dr.
Nome: Steffi
Cognome: Krause
Email: send email
Telefono: +44 2078823747

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 221˙606 €
 EC contributo 221˙606 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-09-01   -   2016-08-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    QUEEN MARY UNIVERSITY OF LONDON

 Organization address address: 327 MILE END ROAD
city: LONDON
postcode: E1 4NS

contact info
Titolo: Dr.
Nome: Steffi
Cognome: Krause
Email: send email
Telefono: +44 2078823747

UK (LONDON) coordinator 221˙606.40

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

microscope    impedance    cell    photon    time    electrochemical    microscopy    sensitivity    interactions    resolution    surface    simultaneously    electrical    images    semiconductor    laser    fluorescence    technique    laps    imaging    spim    substrate   

 Obiettivo del progetto (Objective)

'Traditional microscopy provides information about structure, but is blind to functional dielectric and electric properties of a system. In contrast, microelectrode arrays, which can provide high sensitivity electrophysiological recordings, are difficult to combine with imaging. A two-photon electrochemical and fluorescence microscope capable of producing high-resolution, two-dimensional electrochemical images of parameters such as extracellular potentials, surface charges and impedance and two-photon fluorescence images of the cell-attachment area simultaneously will be developed and used to investigate cell-surface interactions and cell signalling. The instrument will incorporate the capabilities of the impedance imaging technique, Scanning Photo-induced Impedance Microscopy (SPIM), Light-Addressable Potentiometric Sensors (LAPS) and two–photon fluorescence microscopy. The proposed technology has a unique twist in that the semiconductor substrate used as the LAPS/SPIM substrate also serves as the fluorescence detector providing a simple, elegant solution to a complex measurement problem. As the laser beams used for the excitation of LAPS/SPIM and fluorescence signals are focused through the same microscope objective, we will, for the first time, be able to access the same micro-environment with two photon fluorescence microscopy and electrical imaging simultaneously, enabling us to monitor dynamic changes in cell morphology and electrical properties in real time. The strengths of the technique lie in the fact, that cell-surface interactions can be investigated on any material that can be deposited onto a semiconductor substrate, that any point on the substrate can be addressed with a focused laser beam, i.e. the resolution is not limited by the miniaturisation of an electrode or transistor array, and LAPS and SPIM measurements can be performed with high sensitivity due to the use of an organic monolayer as the insulator.'

Altri progetti dello stesso programma (FP7-PEOPLE)

ABRIM (2013)

Advanced Brain Imaging with MRI

Read More  

NANODAOHP (2014)

Nanoparticle based direct absorption oscillating heat pipes for solar thermal systems

Read More  

NU-MATHIMO (2013)

New Materials for High Moment Poles and Shields

Read More