Coordinatore | FORSCHUNGSINSTITUT FUER MOLEKULARE PATHOLOGIE Ges.m.b.H
Organization address
address: Dr. Bohr-Gasse 7 contact info |
Nazionalità Coordinatore | Austria [AT] |
Totale costo | 186˙783 € |
EC contributo | 186˙783 € |
Programma | FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | FP7-PEOPLE-2013-IEF |
Funding Scheme | MC-IEF |
Anno di inizio | 2015 |
Periodo (anno-mese-giorno) | 2015-02-15 - 2017-02-14 |
# | ||||
---|---|---|---|---|
1 |
FORSCHUNGSINSTITUT FUER MOLEKULARE PATHOLOGIE Ges.m.b.H
Organization address
address: Dr. Bohr-Gasse 7 contact info |
AT (VIENNA) | coordinator | 186˙783.60 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'The immune system plays a major role in safeguarding us from cancer. Tumor progression is closely linked to functional suppression of T cell responses, and strategies to reactivate tumor-specific CD8 T cells hold great promise for cancer therapy, as evidenced by recent clinical breakthroughs. However, the further exploration of such therapies is hampered by our incomplete understanding of key genes and pathways involved in suppression of anti-tumor T cell immunity. Here, we propose an innovative approach combining three well-established experimental systems - genetically engineered mouse models of human cancer, T cell receptor/cognate antigen transgenic mice, and advanced in-vivo RNAi screening technologies - to systematically identify and functionally evaluate genes involved in this process. Specifically, we will establish an experimentally scalable in-vivo RNAi system to investigate genes modulating interactions between OT-I transgenic T cells and cOVA expressing cancer models, and use it in a multiplex in-vivo RNAi screen to survey a focused shRNA library targeting ~400 candidate T cell suppressor genes. Using this innovative screening approach and a sequential functional validation strategy, we seek to identify and functionally study new factors involved in the suppression of anti-tumor T cell immunity, ultimately to guide the development of more effective targeted cancer therapies.'
Insights into the ecophysiological and molecular significance of xylem hydraulic capacitance in Populus under drought stress
Read MorePost-transcriptional Control of the Aire-Driven expression of self-antigens in the Thymus
Read MoreQuantum magnetic sensing of neurons using nitrogen-vacancy centers in diamond
Read More