Coordinatore | MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | Germany [DE] |
Totale costo | 1˙999˙992 € |
EC contributo | 1˙999˙992 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2013-CoG |
Funding Scheme | ERC-CG |
Anno di inizio | 2014 |
Periodo (anno-mese-giorno) | 2014-07-01 - 2019-06-30 |
# | ||||
---|---|---|---|---|
1 |
MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.
Organization address
address: Hofgartenstrasse 8 contact info |
DE (MUENCHEN) | hostInstitution | 1˙999˙992.00 |
2 |
MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.
Organization address
address: Hofgartenstrasse 8 contact info |
DE (MUENCHEN) | hostInstitution | 1˙999˙992.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'The main objective of this application is to study the molecular basis of cellular infection by bacterial ABC-type toxins (Tc). Tc complexes are important virulence factors of a range of bacteria, including Photorhabdus luminescens and Yersinia pseudotuberculosis that infect insects and humans. Belonging to the class of pore-forming toxins, tripartite Tc complexes perforate the host membrane by forming channels that translocate toxic enzymes into the host. In our previous cryo-EM work on the P. luminescens Tc complex we discovered that Tcs use a special syringe-like device for cell entry. Building on these results, we now intend to unravel the molecular mechanism through which this unusual and complicated injection system allows membrane permeation and protein translocation. We will use a hybrid approach, including biochemical reconstitution, structural analysis by cryo-EM and X-ray crystallography, fluorescence-based assays and site-directed mutagenesis to provide a comprehensive description of the molecular mechanism of infection at an unprecedented level of molecular detail. Our results will be paradigmatic for understanding the mechanism of action of ABC-type toxins and will shed new light on the interactions of bacterial pathogens with their hosts.'