OLIGABA

GPCR oligomers: Facts and function for the GABAB receptor

 Coordinatore CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE 

 Organization address address: Rue Michel -Ange 3
city: PARIS
postcode: 75794

contact info
Titolo: Mr.
Nome: Jocelyn
Cognome: Mere
Email: send email
Telefono: +33 467613507

 Nazionalità Coordinatore France [FR]
 Totale costo 194˙046 €
 EC contributo 194˙046 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2015
 Periodo (anno-mese-giorno) 2015-03-01   -   2017-02-28

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

 Organization address address: Rue Michel -Ange 3
city: PARIS
postcode: 75794

contact info
Titolo: Mr.
Nome: Jocelyn
Cognome: Mere
Email: send email
Telefono: +33 467613507

FR (PARIS) coordinator 194˙046.60

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

gpcrs    relevance    primary    receptor    subunits    oligomerization    native    gpcr    oligomers    functional    receptors    neurons    gabab    drug   

 Obiettivo del progetto (Objective)

'G protein-coupled receptors (GPCRs) are key players in cell communication and represent the largest class of drug targets. However, GPCR lead compound development has suffered from a low success rate the last 10 years, likely because these receptors are more complex than initially thought. GPCRs are known to form dimers and higher oligomers with specific properties, but the physiological relevance of this oligomerization remains elusive in native tissues. Deciphering the precise functional consequences of GPCR oligomerization is a major challenge in the field and of primary importance to stimulate further drug development. The GABAB receptor – the GPCR for the main inhibitory neurotransmitter, GABA – is an excellent model for studying GPCR oligomerization: Not only is it an obligatory heterodimer composed of GABAB1 and GABAB2 subunits, but it was recently demonstrated by the host laboratory that the GABAB receptor can assemble into larger entities through a direct interaction of the GABAB1 subunits, both in transfected cells and in brain membranes. The aims of the present project are to (i) Identify the stoichiometries and dynamic properties of GABAB oligomers at different localizations in primary neurons, (ii) identify the molecular mechanisms that regulate the GABAB oligomer stoichiometry and characterize them in vitro, and (iii) determine the functional significance of the GABAB oligomers. To reach these goals, we will develop innovative microscopy techniques for quantitative analysis of GABAB oligomerization and novel fluorescent tools for labeling of GABAB in neurons in collaboration with a biotech company. By using state of the art technologies, this study will bring the first clear demonstration of the existence, regulation and functional relevance of GABAB oligomers in native tissue. This will open up new opportunities for development of GABAB modulators for the pharmaceutical industry and methods that could easily be transposed to other membrane receptors.'

Altri progetti dello stesso programma (FP7-PEOPLE)

WILD ARABIDOPSIS (2014)

"Pathways, ecological and genomic consequences of genome duplication in Arabidopsis arenosa, an overlooked diploid-polyploid member of the model genus Arabidopsis"

Read More  

GALACTIC (2014)

Graphene bAsed switchabLe mAterials - towards responsive eleCTronICs : An Intra-European Fellowship for career development

Read More  

GELCRYS (2013)

A Supramolecular Gel Control of Pharmaceutical Crystal Growth

Read More